I have a DataFrame:
df = pd.DataFrame({
'Product': ['AA', 'AA', 'AA', 'AA', 'BB', 'BB', 'BB', 'BB'],
'Type': ['AC', 'AC', 'AD', 'AD', 'BC', 'BC', 'BD', 'BD'],
'Sales': [ 200, 100, 400, 100, 300, 100, 200, 500],
'Qty': [ 5, 3, 3, 6, 4, 7, 4, 1]})
I want to try and get the percentage of total by "Product" and "Type" for both "Sales" and "Qty". I can get the percentage of total for "Sales" and "Qty" separately. But I was wondering if there was a way of doing so for both columns.
To get the percentage of total for one column, the code is:
df['Sales'] = df['Sales'].astype(float)
df['Qty'] = df['Qty'].astype(float)
df = df[['Product', 'Type', 'Sales']]
df = df.groupby(['Product', 'Type']).agg({'Sales': 'sum'})
pcts = df.groupby(level= [0]).apply(lambda x: 100 * x / float(x.sum()))
Is there a way of get this for both columns in one go?
CodePudding user response:
You can chain groupby
:
pct = lambda x: 100 * x / x.sum()
out = df.groupby(['Product', 'Type']).sum().groupby('Product').apply(pct)
print(out)
# Output
Sales Qty
Product Type
AA AC 37.500000 47.058824
AD 62.500000 52.941176
BB BC 36.363636 68.750000
BD 63.636364 31.250000
CodePudding user response:
You could groupby
"Product" and "Type" get the totals for each group. Then groupby
"Product" (which is level=0) again and transform sum
; then divide the sum from the previous step with it:
sm = df.groupby(['Product','Type']).sum()
out = sm / sm.groupby(level=0).transform('sum') * 100
Output:
Sales Qty
Product Type
AA AC 37.500000 47.058824
AD 62.500000 52.941176
BB BC 36.363636 68.750000
BD 63.636364 31.250000
CodePudding user response:
One option is to get the values from individual groupbys and divide:
numerator = df.groupby(["Product", "Type"]).sum()
denominator = df.groupby("Product").sum()
numerator.div(denominator, level = 0, axis = 'index') * 100
Sales Qty
Product Type
AA AC 37.500000 47.058824
AD 62.500000 52.941176
BB BC 36.363636 68.750000
BD 63.636364 31.250000