Suppose I have a dataframe with multiple boolean columns representing certain conditions:
df = DataFrame(
id = ["A", "B", "C", "D"],
cond1 = [true, false, false, false],
cond2 = [false, false, false, false],
cond3 = [true, false, true, false]
)
id | cond1 | cond2 | cond3 | |
---|---|---|---|---|
1 | A | 1 | 0 | 1 |
2 | B | 0 | 0 | 0 |
3 | C | 0 | 0 | 1 |
4 | D | 0 | 0 | 0 |
Now suppose I want to identify rows where any of these conditions are true, ie "A" and "C". It is easy to do this explicitly:
df[:, :all] = df.cond1 .| df.cond2 .| df.cond3
But how can this be done when there are an arbitrary number of conditions, for example something like:
df[:, :all] = any.([ df[:, Symbol("cond$i")] for i in 1:3 ])
The above fails with DimensionMismatch("tried to assign 3 elements to 4 destinations")
because the any
function is being applied column-wise, rather than row-wise. So the real question is: how to apply any
row-wise to multiple Boolean columns in a dataframe?
The ideal output should be:
id | cond1 | cond2 | cond3 | all | |
---|---|---|---|---|---|
1 | A | 1 | 0 | 1 | 1 |
2 | B | 0 | 0 | 0 | 0 |
3 | C | 0 | 0 | 1 | 1 |
4 | D | 0 | 0 | 0 | 0 |
CodePudding user response:
Here is one way to do it:
julia> df = DataFrame(
id = ["A", "B", "C", "D", "E"],
cond1 = [true, false, false, false, true],
cond2 = [false, false, false, false, true],
cond3 = [true, false, true, false, true]
)
5×4 DataFrame
Row │ id cond1 cond2 cond3
│ String Bool Bool Bool
─────┼─────────────────────────────
1 │ A true false true
2 │ B false false false
3 │ C false false true
4 │ D false false false
5 │ E true true true
julia> transform(df, AsTable(r"cond") .=> ByRow.([maximum, minimum]) .=> [:any, :all])
5×6 DataFrame
Row │ id cond1 cond2 cond3 any all
│ String Bool Bool Bool Bool Bool
─────┼───────────────────────────────────────────
1 │ A true false true true false
2 │ B false false false false false
3 │ C false false true true false
4 │ D false false false false false
5 │ E true true true true true
Note that it is quite fast even for very wide tables:
julia> df = DataFrame(rand(Bool, 10_000, 10_000), :auto);
julia> @time transform(df, AsTable(r"x") .=> ByRow.([maximum, minimum]) .=> [:any, :all]);
0.059275 seconds (135.41 k allocations: 103.038 MiB)
In the examples I have used a regex column selector, but of course you can use any row selector you like.