Home > Net >  Reading a CSV file into Pandas
Reading a CSV file into Pandas

Time:02-26

I have csv data that looks like this and I'm trying to read it into a pandas df and I've tired all sorts of combinations given the ample documentation online - I've tried things like:

pd.read_csv("https://www.nwrfc.noaa.gov/natural/nat_norm_text.cgi?id=TDAO3.csv", delimiter=',', skiprows=0, low_memory=False)

and I get this error -

ParserError: Error tokenizing data. C error: Expected 1 fields in line 3, saw 989

Or, like this but get an empty dataframe:

pd.read_csv('https://www.nwrfc.noaa.gov/natural/nat_norm_text.cgi?id=TDAO3.csv', skiprows=2, 
skipfooter=3,index_col=[0], header=None,
             engine='python', # c engine doesn't have skipfooter
             sep='delimiter')
Out[31]: 
Empty DataFrame
Columns: []
Index: []

The first 10 lines of the csv file look like this:

# Water Supply Monthly Volumes for COLUMBIA - THE DALLES DAM (TDAO3) 
# Volumes are in KAF 
ID,Calendar Year,Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec
TDAO3,1948,,,,,,,,,,6866.8,4307.04,4379.38
TDAO3,1949,3546.71,4615.1,8513.31,15020.45,35251.67,21985.99,11226.06,6966.73,4727.37,4406.29,5266.74,5595.91
TDAO3,1950,4353.86,5540.21,9696.27,12854.81,23359.51,39246.78,23393.23,9676.77,5729.74,6990.31,8300.03,8779.57
TDAO3,1951,8032.32,10295.98,7948.59,16144.8,36000.88,28334.09,19735.49,9308.15,6546.95,8907.1,6461.14,6425.76
TDAO3,1952,4671,6222.25,6551.62,18678.3,34866.91,27120.65,15994.18,7907.55,4810.39,3954.32,3259.29,3231.49
TDAO3,1953,7839.72,7870.96,6527.74,9474.66,23384.47,32668.32,17422.63,8655.16,5220.04,5130.46,5183.5,5915.14
TDAO3,1954,5197.51,5967.07,6718.36,10813.69,29190.37,32673.26,29624.38,13456.13,9165.78,5440.92,5732.22,4973.53

thank you,

CodePudding user response:

It is not link directly to file CSV but to page which displays it as HTML using tags <pre>, <br>, etc. and this makes problem.

But you can use requests to download it as text.

Later you can use standard string-functions to get text between <pre> and </pre> and replace <br> with '\n' - and you will have text with correct CSV.

And later you can use io.StringIO to create file in memory - to load it with pd.read_csv() without saving on disk.

import pandas as pd
import requests
import io

url = "https://www.nwrfc.noaa.gov/natural/nat_norm_text.cgi?id=TDAO3.csv"

response = requests.get(url)

start = response.text.find('<pre>')   len('<pre>')
end   = response.text.find('</pre>')

pre = response.text[start:end]

text = pre.replace('<br>', '\n')

buf = io.StringIO(text)  # file-like object in memory

df = pd.read_csv(buf, skiprows=2, low_memory=False)

print(df.to_string())

Result

      ID  Calendar Year       Jan       Feb       Mar       Apr       May       Jun       Jul       Aug      Sep       Oct      Nov       Dec
0   TDAO3           1948       NaN       NaN       NaN       NaN       NaN       NaN       NaN       NaN      NaN   6866.80  4307.04   4379.38
1   TDAO3           1949   3546.71   4615.10   8513.31  15020.45  35251.67  21985.99  11226.06   6966.73  4727.37   4406.29  5266.74   5595.91
2   TDAO3           1950   4353.86   5540.21   9696.27  12854.81  23359.51  39246.78  23393.23   9676.77  5729.74   6990.31  8300.03   8779.57
3   TDAO3           1951   8032.32  10295.98   7948.59  16144.80  36000.88  28334.09  19735.49   9308.15  6546.95   8907.10  6461.14   6425.76
4   TDAO3           1952   4671.00   6222.25   6551.62  18678.30  34866.91  27120.65  15994.18   7907.55  4810.39   3954.32  3259.29   3231.49
5   TDAO3           1953   7839.72   7870.96   6527.74   9474.66  23384.47  32668.32  17422.63   8655.16  5220.04   5130.46  5183.50   5915.14
6   TDAO3           1954   5197.51   5967.07   6718.36  10813.69  29190.37  32673.26  29624.38  13456.13  9165.78   5440.92  5732.22   4973.53
7   TDAO3           1955   4124.26   3570.41   3843.46   7993.82  18505.47  31619.54  20408.54   8922.94  4983.31   5842.70  6982.45   9076.44
8   TDAO3           1956   8079.70   5366.62   8818.69  19754.46  40600.06  40447.34  19846.89   9726.93  5503.69   5446.20  4988.98   6006.80
9   TDAO3           1957   3940.08   4411.33   9155.00  12271.77  40111.86  27864.70  11585.75   6795.70  4613.31   4767.38  4087.55   4789.04
10  TDAO3           1958   4838.12   8246.89   7303.03  13902.66  33958.88  26239.62  12516.52   6898.78  4968.03   5198.19  6662.24   7616.43

... rest ...
  • Related