I am trying to remove some erroneous data from two columns in a DataFrame. The columns are subject to corruption where symbols occur within the columns values. I want to check all values in two columns and replace identified values with '' when a symbol is present.
For example:
import pandas as pd
bad_chars = [')', ',', '@', '/', '!', '&', '*', '.', '_', ' ']
d = {'p1' : [1,2,3,4,5,6],
'p2' : ['abc*', 'abc@', 'zxya', '&sdf', 'p xx', 'abcd'],
'p3' : ['abc', 'abc.', 'zxya', '&sdf', 'p xx', 'abcd']}
df = pd.DataFrame(d)
p1 p2 p3
0 1 abc* abc
1 2 abc@ abc.
2 3 zxya zxya
3 4 &sdf &sdf
4 5 p xx p xx
5 6 abcd abcd
I have been trying unsuccessfully to uses list comprehensions to iterate over the bad_chars variable and replace the value in columns p2 and p3 with empty '' resulting in something like this:
p1 p2 p3
0 1 abc
1 2
2 3 zxya zxya
3 4
4 5
5 6 abcd abcd
Once I have achieved this I would like to remove any rows containing an empty cell in either column p2, p3 or both.
p1 p2 p3
0 3 zxya zxya
1 6 abcd abcd
CodePudding user response:
Here you go:
import pandas as pd
bad_chars = ['\,', '\@', '\/', '\!', '\&', '\*', '\.', '\_', '\ ']
d = {'p1' : [1,2,3,4,5,6],
'p2' : ['abc*', 'abc@', 'zx_ya', '&sdf', 'p xx', 'abcd'],
'p3' : ['abc', 'abc.', 'zxya', '&sdf', 'p xx', 'abcd']}
df = pd.DataFrame(d)
df.loc[df['p2'].str.contains('|'.join(bad_chars)), 'p2'] = None
df.loc[df['p3'].str.contains('|'.join(bad_chars)), 'p3'] = None
df = df.dropna(subset=['p2', 'p3'])
df
note that I have changed bad_chars (added \ to them)
CodePudding user response:
Another option for you to try.
import pandas as pd
bad_chars = [')', ',', '@', '/', '!', '&', '*', '.', '_', ' ']
d = {'p1' : [1,2,3,4,5,6],
'p2' : ['abc*', 'abc@', 'zxya', '&sdf', 'p xx', 'abcd'],
'p3' : ['abc', 'abc.', 'zxya', '&sdf', 'p xx', 'abcd']}
df = pd.DataFrame(d)
for i in df.index:
# creates True/False list checking each char in df cell's
# content using line comprehension
p2_chks = [char in bad_chars for char in df.at[i,"p2"]]
p3_chks = [char in bad_chars for char in df.at[i,"p3"]]
# if "True" exists in the either of the check lists,
# then delete the row
if (True in p2_chks) or (True in p3_chks):
print("{}: p2 or p3 three is true".format(i))
df = df.drop(i)
# Reindex the df rows. Use drop=True so
# new column is not added with old index
df = df.reset_index(drop=True)
print(df)
CodePudding user response:
Please try this:
import pandas as pd
import numpy as np
bad_chars = [')', ',', '@', '/', '!', '&', '*', '.', '_', ' ']
d = {'p1' : [1,2,3,4,5,6],
'p2' : ['abc*', 'abc@', 'zxya', '&sdf', 'p xx', 'abcd'],
'p3' : ['abc', 'abc.', 'zxya', '&sdf', 'p xx', 'abcd']}
df = pd.DataFrame(d)
def check_char(text):
for char in bad_chars:
if char in text:
return np.nan
break
return text
check_cols = ['p2','p3']
for col in check_cols:
df[col] = df[col].apply(lambda x:check_char(x))
df = df.dropna(subset=check_cols)