I would like to use R to create an expanded_df
from a template_df
, where each row is repeated by a number of times specified in a separate column in the template_df
, and an integer count is concatenated to the ID column in the expanded_df
, specifying the number this row has been repeated in the expanded_df
.
I would like this count to start at 600 for each ID class.
E.g., template_df
:
Initial_ID Count
a 2
b 3
c 1
d 4
expanded_df
:
Expanded_ID
a-600
a-601
b-600
b-601
b-602
c-600
d-600
d-601
d-602
d-603
Anyone have any ideas? Thanks!
CodePudding user response:
We may use uncount
to expand the rows and then get the rowid
(of the 'Initial_ID' to paste
after adding 599
library(dplyr)
library(tidyr)
library(data.table)
library(stringr)
template_df %>%
uncount(Count) %>%
transmute(Expanded_ID = str_c(Initial_ID, 599 rowid(Initial_ID), sep = '-'))
-output
Expanded_ID
1 a-600
2 a-601
3 b-600
4 b-601
5 b-602
6 c-600
7 d-600
8 d-601
9 d-602
10 d-603
Or using base R
with rep
and paste
data.frame(Expanded_ID = with(template_df, paste0(rep(Initial_ID, Count), "-",
599 sequence(Count))))
-output
Expanded_ID
1 a-600
2 a-601
3 b-600
4 b-601
5 b-602
6 c-600
7 d-600
8 d-601
9 d-602
10 d-603
data
template_df <- structure(list(Initial_ID = c("a", "b", "c", "d"), Count = c(2L,
3L, 1L, 4L)), class = "data.frame", row.names = c(NA, -4L))
CodePudding user response:
An alternative dplyr
solution:
library(dplyr)
template_df %>%
group_by(Initial_ID) %>%
slice(rep(1:n(), each = Count)) %>%
mutate(row = 600 row_number()-1) %>%
ungroup() %>%
transmute(Expanded_ID = paste(Initial_ID,row, sep = "-"))
Expanded_ID
<chr>
1 a-600
2 a-601
3 b-600
4 b-601
5 b-602
6 c-600
7 d-600
8 d-601
9 d-602
10 d-603