import pandas as pd
from sklearn import preprocessing
my_data = {
"Marks" : [50, 62, 42, 90, 12],
"Exam" : ['FirstSem', 'SecondSem', 'ThirdSem', 'FourthSem','FifthSem']
}
blk = pd.DataFrame( my_data )
print( blk )
Required solution
Marks Exam
0 1 FirstSem
1 1 SecondSem
2 0 ThirdSem
3 1 FourthSem
4 0 FifthSem
Is there any solution to encode the values if marks greater than 45 is 1 and marks less than 45 is 0
CodePudding user response:
blk["Marks"] = np.where(blk["Marks"]>45,1,0)
blk
Marks Exam
0 1 FirstSem
1 1 SecondSem
2 0 ThirdSem
3 1 FourthSem
4 0 FifthSem