I've the following table
Owner | Pet | Housing_Type |
---|---|---|
A | Cats;Dog;Rabbit | 3 |
B | Dog;Rabbit | 2 |
C | Cats | 2 |
D | Cats;Rabbit | 3 |
E | Cats;Fish | 1 |
The code is as follows:
Data_Pets = structure(list(Owner = structure(1:5, .Label = c("A", "B", "C", "D",
"E"), class = "factor"), Pets = structure(c(2L, 5L, 1L,4L, 3L), .Label = c("Cats ",
"Cats;Dog;Rabbit", "Cats;Fish","Cats;Rabbit", "Dog;Rabbit"), class = "factor"),
House_Type = c(3L,2L, 2L, 3L, 1L)), class = "data.frame", row.names = c(NA, -5L))
Can anyone advise me how I can create new columns based on the data in Pet column by creating a new column for each animal separated by ; to look like the following table?
Owner | Cats | Dog | Rabbit | Fish | Housing_Type |
---|---|---|---|---|---|
A | Y | Y | Y | N | 3 |
B | N | Y | Y | N | 2 |
C | N | Y | N | N | 2 |
D | Y | N | Y | N | 3 |
E | Y | N | N | Y | 1 |
Thanks!
CodePudding user response:
One approach is to define a helper function that matches for a specific animal, then bind the columns to the original frame.
Note that some wrangling is done to get rid of whitespace to identify the unique animals to query.
f <- Vectorize(function(string, match) {
ifelse(grepl(match, string), "Y", "N")
}, c("match"))
df %>%
bind_cols(
f(df$Pets, unique(unlist(strsplit(trimws(as.character(df$Pets)), ";"))))
)
Owner Pets House_Type Cats Dog Rabbit Fish
1 A Cats;Dog;Rabbit 3 Y Y Y N
2 B Dog;Rabbit 2 N Y Y N
3 C Cats 2 Y N N N
4 D Cats;Rabbit 3 Y N Y N
5 E Cats;Fish 1 Y N N Y
Or more generalized if you don't know for sure that the separator is ;
, and whitespace is present, stringi
is useful:
dplyr::bind_cols(
df,
f(df$Pets, unique(unlist(stringi::stri_extract_all_words(df$Pets))))
)
CodePudding user response:
You can use separate_rows
and pivot_wider
from tidyr
library:
library(tidyr)
library(dplyr)
Data_Pets %>%
separate_rows(Pets , sep = ";") %>%
mutate(Pets = trimws(Pets)) %>%
mutate(temp = row_number()) %>%
pivot_wider(names_from = Pets, values_from = temp) %>%
mutate(across(c(Cats:Fish), function(x) if_else(is.na(x), "N", "Y"))) %>%
dplyr::relocate(House_Type, .after = Fish)
which will generate:
# Owner Cats Dog Rabbit Fish House_Type
# <fct> <chr> <chr> <chr> <chr> <int>
# 1 A Y Y Y N 3
# 2 B N Y Y N 2
# 3 C Y N N N 2
# 4 D Y N Y N 3
# 5 E Y N N Y 1
Data:
Data_Pets = structure(list(Owner = structure(1:5, .Label = c("A", "B", "C", "D",
"E"), class = "factor"), Pets = structure(c(2L, 5L, 1L,4L, 3L), .Label = c("Cats ",
"Cats;Dog;Rabbit", "Cats;Fish","Cats;Rabbit", "Dog;Rabbit"), class = "factor"),
House_Type = c(3L,2L, 2L, 3L, 1L)), class = "data.frame", row.names = c(NA, -5L))