I have a DataFrame that looks like the following:
a b c
0 NaN 8 NaN
1 NaN 7 NaN
2 NaN 5 NaN
3 7.0 3 NaN
4 3.0 5 NaN
5 5.0 4 NaN
6 7.0 1 NaN
7 8.0 9 3.0
8 NaN 5 5.0
9 NaN 6 4.0
What I want to create is a new DataFrame where each value contains the sum of all non-NaN values before it in the same column. The resulting new DataFrame would look like this:
a b c
0 0 1 0
1 0 2 0
2 0 3 0
3 1 4 0
4 2 5 0
5 3 6 0
6 4 7 0
7 5 8 1
8 5 9 2
9 5 10 3
I have achieved it with the following code:
for i in range(len(df)):
df.iloc[i] = df.iloc[0:i].isna().sum()
However, I can only do so with an individual column. My real DataFrame contains thousands of columns so iterating between them is impossible due to the low processing speed. What can I do? Maybe it should be something related to using the pandas .apply()
function.
CodePudding user response:
There's no need for apply
. It can be done much more efficiently using notna
cumsum
(notna
for the non-NaN values and cumsum
for the counts):
out = df.notna().cumsum()
Output:
a b c
0 0 1 0
1 0 2 0
2 0 3 0
3 1 4 0
4 2 5 0
5 3 6 0
6 4 7 0
7 5 8 1
8 5 9 2
9 5 10 3
CodePudding user response:
Check with notna
with cumsum
out = df.notna().cumsum()
Out[220]:
a b c
0 0 1 0
1 0 2 0
2 0 3 0
3 1 4 0
4 2 5 0
5 3 6 0
6 4 7 0
7 5 8 1
8 5 9 2
9 5 10 3