I am loading a TextLineDataset
and I want to apply a tokenizer trained on a file:
import tensorflow as tf
data = tf.data.TextLineDataset(filename)
MAX_WORDS = 20000
tokenizer = Tokenizer(num_words=MAX_WORDS)
tokenizer.fit_on_texts([x.numpy().decode('utf-8') for x in train_data])
Now I want to apply this tokenizer on data
so that each word is replaced with its encoded value. I have tried data.map(lambda x: tokenizer.texts_to_sequences(x))
which gives OperatorNotAllowedInGraphError: iterating over
tf.Tensor is not allowed in Graph execution. Use Eager execution or decorate this function with @tf.function.
Following the instruction, when I write the code as:
@tf.function
def fun(x):
return tokenizer.texts_to_sequences(x)
train_data.map(lambda x: fun(x))
I get: OperatorNotAllowedInGraphError: iterating over
tf.Tensor is not allowed: AutoGraph did convert this function. This might indicate you are trying to use an unsupported feature
.
So how to do the tokenization on data
?
CodePudding user response:
The problem is that tf.keras.preprocessing.text.Tokenizer
is not meant to be used in graph mode. Check the docs, both fit_on_texts
and texts_to_sequences
require lists of strings and not tensors. I would recommend using tf.keras.layers.TextVectorization
, but if you really want to use the Tokenizer
approach, try something like this:
import tensorflow as tf
import numpy as np
with open('data.txt', 'w') as f:
f.write('this is a very important sentence \n')
f.write('where is my cat actually?\n')
f.write('fish are everywhere!\n')
dataset = tf.data.TextLineDataset(['/content/data.txt'])
tokenizer = tf.keras.preprocessing.text.Tokenizer()
tokenizer.fit_on_texts([n.numpy().decode("utf-8")for n in list(dataset.map(lambda x: x))])
def tokenize(x):
return tokenizer.texts_to_sequences([x.numpy().decode("utf-8")])
dataset = dataset.map(lambda x: tf.py_function(tokenize, [x], Tout=[tf.int32])[0])
for d in dataset:
print(d)
tf.Tensor([2 1 3 4 5 6], shape=(6,), dtype=int32)
tf.Tensor([ 7 1 8 9 10], shape=(5,), dtype=int32)
tf.Tensor([11 12 13], shape=(3,), dtype=int32)
Using the TextVectorization
layer would look something like this:
with open('data.txt', 'w') as f:
f.write('this is a very important sentence \n')
f.write('where is my cat actually?\n')
f.write('fish are everywhere!\n')
dataset = tf.data.TextLineDataset(['/content/data.txt'])
vectorize_layer = tf.keras.layers.TextVectorization(output_mode='int')
vectorize_layer.adapt(dataset)
dataset = dataset.map(vectorize_layer)