I received this dataset which contains real estate data in key-value pairs in a .csv format.
If I drop the first line, I can load it with Pandas and get a dataframe like so:
id 1 | [{'key'": '"floor'" | '"value'": '"2. Floor'"} | {'"key'": '"available_date'" | "value'": '"nach Vereinbarung'"} |
id 2 | [{'key'": '"floor'" | '"value'": '"1. Floor'"} | {'"key'": '"living_space'" | "value'": 81.0} |
id 3 | [{'key'": '"living_space'" | '"value'": 240.0} | {'"key'": '"construction_year'" | '"value'": 2012} |
id 4 | [{'key'": '"living_space'" | '"value'": 280.0} | {'"key'": '"construction_year'" | '"value'": 1851} |
However, I don't know how to work with key-value pairs in Python, so I wanted to transform this data into a Pandas dataframe, with the "keys" as the headers and their respective values in each row, like so:
id | floor | available_date | living_space | construction_year |
---|---|---|---|---|
id 1 | 2. Floor | nach Vereinbarung | ||
id 2 | 1. Floor | 81 | ||
id 3 | 240.0 | 2012 | ||
id 4 | 280.0 | 1851 |
I have found many instructions on how to transform a Pandas dataframe into key-value pairs, but not the other way around...
Thank you in advance.
UPDATE
The content of my data looks like this:
print(df.head(10))
[{'key'": '"floor'" '"value'": '"3. Stock'"} {'"key'": '"living_space'" '"value'": 50.0} {'"key'": '"available_date'" ... Unnamed: 49 Unnamed: 50 Unnamed: 51 Unnamed: 52 Unnamed: 53
0 [{'key'": '"floor'" '"value'": '"2. Stock'"} {'"key'": '"living_space'" '"value'": 113.0} {'"key'": '"construction_year'" ... NaN NaN NaN NaN NaN
1 [{'key'": '"floor'" '"value'": '"1. Stock'"} {'"key'": '"living_space'" '"value'": 52.0} {'"key'": '"construction_year'" ... NaN NaN NaN NaN NaN
.. ... ... ... ... ... ... ... ... ... ... ...
8 [{'key'": '"living_space'" '"value'": 240.0} {'"key'": '"construction_year'" '"value'": 2012} {'"key'": '"available_date'" ... NaN NaN NaN NaN NaN
9 [{'key'": '"living_space'" '"value'": 280.0} {'"key'": '"construction_year'" '"value'": 1851} {'"key'": '"available_date'" ... NaN NaN NaN NaN NaN
[10 rows x 54 columns]
UPDATE
The contents of the .csv looks like the following (for the 2 first observations):
1,"[{'key'"": '""floor'"""," '""value'"": '""3. Stock'""}"," {'""key'"": '""living_space'"""," '""value'"": 50.0}"," {'""key'"": '""available_date'"""," '""value'"": '""01.04.2022'""}"," {'""key'"": '""useful_area'"""," '""value'"": 60.0}"," {'""key'"": '""pets_allowed'"""," '""value'"": true}"," {'""key'"": '""child_friendly'"""," '""value'"": true}"," {'""key'"": '""balcony'"""," '""value'"": true}"," {'""key'"": '""parking_outdoor'"""," '""value'"": true}"," {'""key'"": '""lift'"""," '""value'"": true}"," {'""key'"": '""cable_tv'"""," '""value'"": true}]""","[{'date'"": '""2022-02-25'"""," '""price_amount'"": 1550}]"""
2,"[{'key'"": '""floor'"""," '""value'"": '""2. Stock'""}"," {'""key'"": '""living_space'"""," '""value'"": 113.0}"," {'""key'"": '""construction_year'"""," '""value'"": 2022}"," {'""key'"": '""available_date'"""," '""value'"": '""01.04.2022'""}"," {'""key'"": '""wheelchair_accessible'"""," '""value'"": true}"," {'""key'"": '""child_friendly'"""," '""value'"": true}"," {'""key'"": '""balcony'"""," '""value'"": true}"," {'""key'"": '""parking_indoor'"""," '""value'"": true}"," {'""key'"": '""lift'"""," '""value'"": true}]""","[{'date'"": '""2022-02-27'"""," '""price_amount'"": 2990}]"""
The data was scrapped from real estate online marketplaces it seems. I think is also relevant to state that each observation has a different number of features.
CodePudding user response:
Possible solution is the following:
file 'data.csv' content
1,"[{'key'"": '""floor'"""," '""value'"": '""3. Stock'""}"," {'""key'"": '""living_space'"""," '""value'"": 50.0}"," {'""key'"": '""available_date'"""," '""value'"": '""01.04.2022'""}"," {'""key'"": '""useful_area'"""," '""value'"": 60.0}"," {'""key'"": '""pets_allowed'"""," '""value'"": true}"," {'""key'"": '""child_friendly'"""," '""value'"": true}"," {'""key'"": '""balcony'"""," '""value'"": true}"," {'""key'"": '""parking_outdoor'"""," '""value'"": true}"," {'""key'"": '""lift'"""," '""value'"": true}"," {'""key'"": '""cable_tv'"""," '""value'"": true}]""","[{'date'"": '""2022-02-25'"""," '""price_amount'"": 1550}]"""
2,"[{'key'"": '""floor'"""," '""value'"": '""2. Stock'""}"," {'""key'"": '""living_space'"""," '""value'"": 113.0}"," {'""key'"": '""construction_year'"""," '""value'"": 2022}"," {'""key'"": '""available_date'"""," '""value'"": '""01.04.2022'""}"," {'""key'"": '""wheelchair_accessible'"""," '""value'"": true}"," {'""key'"": '""child_friendly'"""," '""value'"": true}"," {'""key'"": '""balcony'"""," '""value'"": true}"," {'""key'"": '""parking_indoor'"""," '""value'"": true}"," {'""key'"": '""lift'"""," '""value'"": true}]""","[{'date'"": '""2022-02-27'"""," '""price_amount'"": 2990}]"""
import pandas as pd
import json
# read data from csv file
with open("data.csv", "r", encoding="utf-8") as file:
data = file.read().replace('"', '').replace("'", '"').replace("[", '').replace("]", '').splitlines()
# convert string to list
data_dict = [json.loads("[" d "]") for d in data]
data_all = []
for list_item in data_dict:
data_prepared = {}
for idx, item in enumerate(list_item):
if idx == 0:
data_prepared["id"] = item
else:
if 'key' in item:
data_prepared[item['key']] = item['value']
else:
data_prepared.update(item)
data_all.append(data_prepared)
# create dataframe
df = pd.DataFrame(data_all)
df = df.fillna("-")
df = df.replace(True, 'Yes')
df = df.replace(False, 'No')
df
Returns