Say instead of a dictionary I have these lists:
cities = ('New York', 'Vancouver', 'London', 'Berlin', 'Tokyo', 'Bangkok')
Europe = ('London', 'Berlin')
America = ('New York', 'Vancouver')
Asia = ('Tokyo', 'Bangkok')
I want to create a pd.DataFrame from this such as:
City | Continent |
---|---|
New York | America |
Vancouver | America |
London | Europe |
Berlin | Europe |
Tokyo | Asia |
Bangkok | Asia |
Note: this is the minimum reproductible example to keep it simple, but the real dataset is more like city -> country -> continent
I understand with such a small sample it would be possible to manually create a dictionary, but in the real example there are many more data-points. So I need to automate it.
I've tried a for loop and a while loop with arguments such as "if Europe in cities
" but that doesn't do anything and I think that's because it's "false" since it compares the whole list "Europe" against the whole list "cities".
Either way, my idea was that the loops would go through every city in the cities list and return (city continent) for each. I just don't know how to um... actually make that work.
I am very new and I wasn't able to figure anything out from looking at similar questions.
Thank you for any direction!
CodePudding user response:
Problem in your Code:
- First of all, let's take a look at a Code Snippet used by you:
if Europe in cities:
was returned nothing Correct! - It is because you are comparing the whole list
[Europe]
instead of individual list element['London', 'Berlin']
Solution:
- Initially, I have imported all the important modules and regenerated a
List
ofSample Data
provided by you.
# Import all the Important Modules
import pandas as pd
# Read Data
cities = ['New York', 'Vancouver', 'London', 'Berlin', 'Tokyo', 'Bangkok']
Europe = ['London', 'Berlin']
America = ['New York', 'Vancouver']
Asia = ['Tokyo', 'Bangkok']
- Now, As you can see in your
Expected Output
we have2 Columns
mentioned below:
- City [Which is already available in the form of
cities (List)
] - Continent [Which we have to generate based on other
Lists
. In our case:Europe, America, Asia
]
- For Generating a proper
Continent List
follow theCode
mentioned below:
# Make Continent list
continent = []
# Compare the list of Europe, America and Asia with cities
for city in cities:
if city in Europe:
continent.append('Europe')
elif city in America:
continent.append('America')
elif city in Asia:
continent.append('Asia')
else:
pass
# Print the continent list
continent
# Output of Above Code:
['America', 'America', 'Europe', 'Europe', 'Asia', 'Asia']
- As you can see we have received the expected
Continent
List. Now let's generate thepd.DataFrame()
from the same:
# Make dataframe from 'City' and 'Continent List`
data_df = pd.DataFrame({'City': cities, 'Continent': continent})
# Print Results
data_df
# Output of the above Code:
City Continent
0 New York America
1 Vancouver America
2 London Europe
3 Berlin Europe
4 Tokyo Asia
5 Bangkok Asia
- Hope this Solution helps you. But if you are still facing Errors then feel free to start a
thread
below.
CodePudding user response:
1 : Counting elements
You just count the number of cities in each continent and create a list with it :
cities = ('New York', 'Vancouver', 'London', 'Berlin', 'Tokyo', 'Bangkok')
Europe = ('London', 'Berlin')
America = ('New York', 'Vancouver')
continent = []
cities = []
for name, cont in zip(['Europe', 'America', 'Asia'], [Europe, America, Asia]):
continent = [name for _ in range(len(cont))]
cities = [city for city in cont]
df = pd.DataFrame({'City': cities, 'Continent': continent}
print(df)
And this gives you the following result :
City Continent
0 London Europe
1 Berlin Europe
2 New York America
3 Vancouver America
4 Tokyo Asia
5 Bangkok Asia
This is I think the best solution.
2: With dictionnary
You can create an intermediate dictionnary. Starting from your code
cities = ('New York', 'Vancouver', 'London', 'Berlin', 'Tokyo', 'Bangkok')
Europe = ('London', 'Berlin')
America = ('New York', 'Vancouver')
Asia = ('Tokyo', 'Bangkok')
You would do this :
continent = dict()
for cont_name, cont_cities in zip(['Europe', 'America', 'Asia'], [Europe, America, Asia]):
for city in cont_cities:
continent[city] = cont_name
This give you the following result :
{
'London': 'Europe', 'Berlin': 'Europe',
'New York': 'America', 'Vancouver': 'America',
'Tokyo': 'Asia', 'Bangkok': 'Asia'
}
Then, you can create your DataFrame :
df = pd.DataFrame(continent.items())
print(df)
0 1
0 London Europe
1 Berlin Europe
2 New York America
3 Vancouver America
4 Tokyo Asia
5 Bangkok Asia
This solution allows you not to override your cities
tuple
CodePudding user response:
I think on the long run you might want to elimninate loops for large datasets. Also, you might need to include more continent depending on the content of your data.
import pandas as pd
continent = {
'0': 'Europe',
'1': 'America',
'2': 'Asia'
}
df= pd.DataFrame([Europe, America, Asia]).stack().reset_index()
df['continent']= df['level_0'].astype(str).map(continent)
df.drop(['level_0','level_1'], inplace=True, axis=1)
You should get this output
0 continent
0 London Europe
1 Berlin Europe
2 New York America
3 Vancouver America
4 Tokyo Asia
5 Bangkok Asia
Feel free to adjust to suit your use case