I have two dataframes:
import numpy as np
import pandas as pd
from sklearn.metrics import r2_score
df = pd.DataFrame([{'A': -4, 'B': -3, 'C': -2, 'D': -1, 'E': 2, 'F': 4, 'G': 8, 'H': 6, 'I': -2}])
df2 looks like this (just a cutout; in total there are ~100 rows).
df2 = pd.DataFrame({'Date': [220412004, 220412004, 220412004, 220412006], 'A': [-0.15584, -0.11446, -0.1349, -0.0458], 'B': [-0.11826, -0.0833, -0.1025, -0.0216], 'C': [-0.0611, -0.0413, -0.0645, -0.0049], 'D': [-0.04461, -0.022693, -0.0410, 0.0051], 'E': [0.0927, 0.0705, 0.0923, 0.0512], 'F': [0.1453, 11117, 0.1325, 0.06205], 'G': [0.30077, 0.2274, 0.2688, 0.1077], 'H': [0.2449, 0.1860, 0.2274, 0.09328], 'I': [-0.0706, -0.0612, -0.0704, -0.02953]})
Date A B C D E F G H I
3 220412004 -0.15584 -0.11826 -0.0611 -0.04461 0.0927 0.1453 0.30077 0.2449 -0.0706
4 220412004 -0.11446 -0.0833 -0.0413 -0.022693 0.0705 0.11117 0.2274 0.1860 -0.0612
5 220412004 -0.1349 -0.1025 -0.0645 -0.0410 0.0923 0.1325 0.2688 0.2274 -0.0704
7 220412006 -0.0458 -0.0216 -0.0049 0.0051 0.0512 0.06205 0.1077 0.09328 -0.02953
Then I set:
df2 = df2.set_index('Date')
df2 = df2.astype(float)
Now I iterate through all rows of df2 and make a linear regression:
for index, row in df2.iterrows():
reg = np.polyfit(df.values[0], row.values, 1)
predict = np.poly1d(reg) # Slope and intercept
trend = np.polyval(reg, df)
std = row.std() # Standard deviation
r2 = np.round(r2_score(row.values, predict(df.T)), 5) #R-squared
so far so good.
Now I would like to store the results into df2. This is my approach:
df3 = pd.DataFrame([predict])
df4 = pd.DataFrame([r2])
df5 = pd.concat([df3, df4], axis = 1)
df5.columns = ['Slope', 'Intercept', 'r2']
result = pd.concat([df2, df5], axis = 1)
However, this will just add a single new row to "result". But I want the result to be stored to the corresponding index. Any ideas?
Edit:
to make it clearer, this is how I want result
to look like:
result = pd.DataFrame({'Date': [220412004, 220412004, 220412004, 220412006], 'A': [-0.15584, -0.11446, -0.1349, -0.0458], 'B': [-0.11826, -0.0833, -0.1025, -0.0216], 'C': [-0.0611, -0.0413, -0.0645, -0.0049], 'D': [-0.04461, -0.022693, -0.0410, 0.0051], 'E': [0.0927, 0.0705, 0.0923, 0.0512], 'F': [0.1453, 11117, 0.1325, 0.06205], 'G': [0.30077, 0.2274, 0.2688, 0.1077], 'H': [0.2449, 0.1860, 0.2274, 0.09328], 'I': [-0.0706, -0.0612, -0.0704, -0.02953], 'Slope': [0.03834244, 235.48473307, 0.03481399, 0.01286896], 'Intercept': [0.00294672, 1025.92034249, 0.00324312, 0.01272759], 'r2': [0.99615000, 0.07415000, 0.99447000, 0.97297000]})
CodePudding user response:
You can store the result in every loop
for index, row in df2.iterrows():
reg = np.polyfit(df.values[0], row.values, 1)
predict = np.poly1d(reg) # Slope and intercept
trend = np.polyval(reg, df)
std = row.std() # Standard deviation
r2 = np.round(r2_score(row.values, predict(df.T)), 5) #R-squared
df2.loc[[index], 'Slope and intercept'] = pd.Series([predict], index=[index])
df2.loc[index, 'r2'] = r2
print(df2)
A B C D E F G H I Slope and intercept r2
Date
220412004 -0.15584 -0.11826 -0.0611 -0.044610 0.0927 0.14530 0.30077 0.24490 -0.07060 [0.03481399394856277] 0.99447
220412004 -0.11446 -0.08330 -0.0413 -0.022693 0.0705 11117.00000 0.22740 0.18600 -0.06120 [0.03481399394856277] 0.99447
220412004 -0.13490 -0.10250 -0.0645 -0.041000 0.0923 0.13250 0.26880 0.22740 -0.07040 [0.03481399394856277] 0.99447
220412006 -0.04580 -0.02160 -0.0049 0.005100 0.0512 0.06205 0.10770 0.09328 -0.02953 [0.012868956127080184] 0.97297
You can also try apply
instead of iterating
def cal(row):
reg = np.polyfit(df.values[0], row.values, 1)
predict = np.poly1d(reg) # Slope and intercept
trend = np.polyval(reg, df)
std = row.std() # Standard deviation
r2 = np.round(r2_score(row.values, predict(df.T)), 5) #R-squared
#return pd.Series([predict, r2])
return predict, r2
df2[['Slope and intercept', 'r2']] = df2.apply(cal, axis=1, result_type='expand')
CodePudding user response:
This is my solution:
import numpy as np
import pandas as pd
from sklearn.metrics import r2_score
df = pd.DataFrame([{'A': -4, 'B': -3, 'C': -2, 'D': -1, 'E': 2, 'F': 4, 'G': 8, 'H': 6, 'I': -2}])
df2 = pd.DataFrame({'Date': [220412004, 220412004, 220412004, 220412006], 'A': [-0.15584, -0.11446, -0.1349, -0.0458], 'B': [-0.11826, -0.0833, -0.1025, -0.0216], 'C': [-0.0611, -0.0413, -0.0645, -0.0049], 'D': [-0.04461, -0.022693, -0.0410, 0.0051], 'E': [0.0927, 0.0705, 0.0923, 0.0512], 'F': [0.1453, 11117, 0.1325, 0.06205], 'G': [0.30077, 0.2274, 0.2688, 0.1077], 'H': [0.2449, 0.1860, 0.2274, 0.09328], 'I': [-0.0706, -0.0612, -0.0704, -0.02953]})
df2 = df2.set_index('Date')
df2 = df2.astype(float)
def cal(row):
reg = np.polyfit(df.values[0], row.values, 1)
predict = np.poly1d(reg) # Slope and intercept
trend = np.polyval(reg, df)
std = row.std() # Standard deviation
r2 = np.round(r2_score(row.values, predict(df.T)), 5) #R-squared
df3 = pd.DataFrame([predict])
df3.columns = ['Slope', 'Intercept']
Slope = df3['Slope'].to_string(dtype=False)
Slope = Slope[3:]
Intercept = df3['Intercept'].to_string(dtype=False)
Intercept = Intercept[3:]
print(Intercept)
return Slope, Intercept, r2
df2[['Slope', 'intercept', 'r2']] = df2.apply(cal, axis=1, result_type='expand')
df2[['Slope', 'intercept']] = df2[['Slope', 'intercept']].astype(float)
Thanks to all that helped me here :)