I am trying to fix one issue with this dataset. The link is here. So, I loaded the dataset this way.
df = pd.read_csv('ratings.csv', sep='::', names=['user_id', 'movie_id', 'rating', 'timestamp'])
num_of_unique_users = len(df['user_id'].unique())
The number of unique user is 69878. If we print out the last rows of the dataset. We can see that the user id is above 69878. There are missing user id in this case. Same case for movie id. There is an exceeding number of movie id than actual id.
I only want it to match the missing user_id with the existing one and not exceed 69878. For example, the the number 75167 will become the last number of unique user id which is 69878 and the movie id 65133 will become 10677 the last unique movie id.
Actual
user_id movie_id rating timestamp
0 1 122 5.0 838985046
1 1 185 5.0 838983525
2 1 231 5.0 838983392
3 1 292 5.0 838983421
4 1 316 5.0 838983392
... ... ... ... ...
10000044 71567 1984 1.0 912580553
10000045 71567 1985 1.0 912580553
10000046 71567 1986 1.0 912580553
10000047 71567 2012 3.0 912580722
10000048 71567 2028 5.0 912580344
Desired
user_id movie_id rating timestamp
0 1 122 5.0 838985046
1 1 185 5.0 838983525
2 1 231 5.0 838983392
3 1 292 5.0 838983421
4 1 316 5.0 838983392
... ... ... ... ...
10000044 69878 1984 1.0 912580553
10000045 69878 1985 1.0 912580553
10000046 69878 1986 1.0 912580553
10000047 69878 2012 3.0 912580722
10000048 69878 2028 5.0 912580344
Is there anyway to do this with pandas?
CodePudding user response:
Here's a way to do this:
df2 = df.groupby('user_id').count().reset_index()
df2 = df2.assign(new_user_id=df2.index 1).set_index('user_id')
df = df.join(df2['new_user_id'], on='user_id').drop(columns=['user_id']).rename(columns={'new_user_id':'user_id'})
df2 = df.groupby('movie_id').count().reset_index()
df2 = df2.assign(new_movie_id=df2.index 1).set_index('movie_id')
df = df.join(df2['new_movie_id'], on='movie_id').drop(columns=['movie_id']).rename(columns={'new_movie_id':'movie_id'})
df = pd.concat([df[['user_id', 'movie_id']], df.drop(columns=['user_id', 'movie_id'])], axis=1)
Sample input:
user_id movie_id rating timestamp
0 1 2 5.0 838985046
1 1 4 5.0 838983525
2 3 4 5.0 838983392
3 3 6 5.0 912580553
4 5 2 5.0 912580722
5 5 6 5.0 912580344
Sample output:
user_id movie_id rating timestamp
0 1 1 5.0 838985046
1 1 2 5.0 838983525
2 2 2 5.0 838983392
3 2 3 5.0 912580553
4 3 1 5.0 912580722
5 3 3 5.0 912580344
Here are intermediate results and explanations.
First we do this:
df2 = df.groupby('user_id').count().reset_index()
Output:
user_id movie_id rating timestamp
0 1 2 2 2
1 3 2 2 2
2 5 2 2 2
What we have done above is to use groupby
to get one row per unique user_id. We call count
just to convert the output (a groupby object) back to a dataframe. We call reset_index
to create a new integer range index with no gaps. (NOTE: the only column we care about for future use is user_id.)
Next we do this:
df2 = df2.assign(new_user_id=df2.index 1).set_index('user_id')
Output:
movie_id rating timestamp new_user_id
user_id
1 2 2 2 1
3 2 2 2 2
5 2 2 2 3
The assign
call creates a new column named new_user_id which we fill using the 0 offset index plus 1 (so that we will not have id values < 1). The set_index
call replaces our index with user_id
in anticipation of using the index of this dataframe as the target for a late call to join
.
The next step is:
df = df.join(df2['new_user_id'], on='user_id').drop(columns=['user_id']).rename(columns={'new_user_id':'user_id'})
Output:
movie_id rating timestamp user_id
0 2 5.0 838985046 1
1 4 5.0 838983525 1
2 4 5.0 838983392 2
3 6 5.0 912580553 2
4 2 5.0 912580722 3
5 6 5.0 912580344 3
Here we have taken just the new_user_id column of df2 and called join
on the df object, directing the method to use the user_id column (the on
argument) in df to join with the index (which was originally the user_id column in df2). This creates a df with the desired new-paradigm user_id values in the column named new_user_id. All that remains is to drop the old-paradigm user_id column and rename new_user_id to be user_id, which is what the calls to drop
and rename
do.
The logic for changing the movie_id values to the new paradigm (i.e., eliminating gaps in the unique value set) is completely analogous. When we're done, we have this output:
rating timestamp user_id movie_id
0 5.0 838985046 1 1
1 5.0 838983525 1 2
2 5.0 838983392 2 2
3 5.0 912580553 2 3
4 5.0 912580722 3 1
5 5.0 912580344 3 3
To finish up, we reorder the columns to look like the original using this code:
df = pd.concat([df[['user_id', 'movie_id']], df.drop(columns=['user_id', 'movie_id'])], axis=1)
Output:
user_id movie_id rating timestamp
0 1 1 5.0 838985046
1 1 2 5.0 838983525
2 2 2 5.0 838983392
3 2 3 5.0 912580553
4 3 1 5.0 912580722
5 3 3 5.0 912580344
UPDATE:
Here is an alternative solution which uses Series.unique()
instead of gropuby
and saves a couple of lines:
df2 = pd.DataFrame(df.user_id.unique(), columns=['user_id']
).reset_index().set_index('user_id').rename(columns={'index':'new_user_id'})['new_user_id'] 1
df = df.join(df2, on='user_id').drop(columns=['user_id']).rename(columns={'new_user_id':'user_id'})
df2 = pd.DataFrame(df.movie_id.unique(), columns=['movie_id']
).reset_index().set_index('movie_id').rename(columns={'index':'new_movie_id'})['new_movie_id'] 1
df = df.join(df2, on='movie_id'
).drop(columns=['movie_id']).rename(columns={'new_movie_id':'movie_id'})
df = pd.concat([df[['user_id', 'movie_id']], df.drop(columns=['user_id', 'movie_id'])], axis=1)
The idea here is:
Line 1:
- use
unique
to get the unique values of user_id without bothering to count duplicates or maintain other columns (which is whatgroupby
did in the original solution above) - create a new dataframe containing these unique values in a column named new_user_id
- call
reset_index
to get an index that is a non-gapped integer range (one integer for each unique user_id) - call
set_index
which will create a column named 'index' containing the previous index (0..number of unique user_id values) and make user_id the new index - rename the column labeled 'index' to be named new_user_id
- access the new_user_id column and add 1 to convert from 0-offset to 1-offset id value.
Line 2:
- call
join
just as we did in the original solution, except that theother
dataframe is simply df2 (which is fine since it has only a single column, new_user_id).
The logic for movie_id is completely analogous, and the final line using concat
is the same as in the original solution above.