I want to add the following columns of of this df below:
year g hhdi inf unemp hpi
1 2010 4.2 1525.566 1.1 8.6 83.850
2 2011 3.9 1577.630 2.5 7.9 86.775
3 2012 0.4 1613.950 2.2 7.6 89.750
4 2013 0.4 1636.963 1.6 7.7 92.575
5 2014 2.2 1678.036 0.8 7.5 95.475
6 2015 1.5 1724.533 0.7 7.1 99.975
7 2016 2.2 1784.885 0.4 6.8 107.500
8 2017 2.7 1844.458 1.7 6.3 114.075
9 2018 1.1 1919.422 1.9 5.8 121.650
10 2019 1.1 1959.941 1.4 5.5 128.675
to the following panel data:
Year_ qe npl_lnratio NAME cap
7 2012 0 0.62829700 Aachener Bank eG 18.18
8 2013 0 0.27315939 Aachener Bank eG 19.10
9 2014 0 0.06071818 Aachener Bank eG 17.11
10 2015 1 -0.13660923 Aachener Bank eG 16.25
11 2016 1 -0.28913659 Aachener Bank eG 15.76
12 2017 1 -0.68695033 Aachener Bank eG 15.52
13 2018 1 -0.62712593 Aachener Bank eG 15.79
16 2013 0 0.63553422 Aachener Bausparkasse AG 9.33
17 2014 0 0.37843498 Aachener Bausparkasse AG 13.11
18 2015 1 0.26252868 Aachener Bausparkasse AG 13.42
19 2016 1 0.33510288 Aachener Bausparkasse AG 14.07
20 2017 1 0.35341677 Aachener Bausparkasse AG 17.31
21 2018 1 0.35543734 Aachener Bausparkasse AG 19.00
22 2019 1 0.34700814 Aachener Bausparkasse AG 28.48
114 2010 0 1.64156954 AKA Ausfuhrkredit-GmbH 18.10
115 2011 0 0.44880167 AKA Ausfuhrkredit-GmbH 19.99
116 2012 0 0.06958573 AKA Ausfuhrkredit-GmbH 21.55
118 2014 0 -0.14343804 AKA Ausfuhrkredit-GmbH 18.74
119 2015 1 -0.15527808 AKA Ausfuhrkredit-GmbH 18.21
120 2016 1 -1.08621424 AKA Ausfuhrkredit-GmbH 16.91
121 2017 1 -1.44157456 AKA Ausfuhrkredit-GmbH 19.46
122 2018 1 -1.74754792 AKA Ausfuhrkredit-GmbH 17.04
134 2010 0 1.72536067 akf bank GmbH & Co KG 10.95
135 2011 0 1.71238396 akf bank GmbH & Co KG 9.90
136 2012 0 1.11063624 akf bank GmbH & Co KG 10.19
137 2013 0 1.51679825 akf bank GmbH & Co KG 9.88
139 2014 0 1.26395575 akf bank GmbH & Co KG 10.12
140 2015 1 1.25142651 akf bank GmbH & Co KG 11.39
144 2017 1 0.81729478 akf bank GmbH & Co KG 12.69
146 2018 1 1.15611067 akf bank GmbH & Co KG 13.68
147 2019 1 1.22488125 akf bank GmbH & Co KG 13.82
So that for every year in the panel data the corresponding g, hhdi, inflation, unemp and hpi are incorporated.
I tried working with a for loop where I check whether the years from both df correspond, but I can't make it work.
df <- data.frame()
for (i in timeseries$year) {
for (j in panel$Year_) {
df <- cbind(df, c())
}
CodePudding user response:
Change column name in second data frame from Year_
to Year
do the saame for the first df (year to Year).
merge(x=df2, y=df1, by='Year', all.x = TRUE)