I have a dataframe that looks like this (Minimal Reproducible Example)
thermometers = ['T-10000_0001', 'T-10000_0002','T-10000_0003', 'T-10000_0004',
'T-10001_0001', 'T-10001_0002', 'T-10001_0003', 'T-10001_0004',
'T-10002_0001', 'T-10002_0003', 'T-10002_0003', 'T-10002_0004']
temperatures = [15.1, 14.9, 12.7, 10.8,
19.8, 18.3, 17.7, 18.1,
20.0, 16.4, 17.6, 19.3]
df_set = {'thermometers': thermometers,
'Temperatures': temperatures}
df = pd.DataFrame(df_set)
Index | Thermometer | Temperature |
---|---|---|
0 | T-10000_0001 | 14.9 |
1 | T-10000_0002 | 12.7 |
2 | T-10000_0003 | 12.7 |
3 | T-10000_0004 | 10.8 |
4 | T-10001_0001 | 19.8 |
5 | T-10001_0002 | 18.3 |
6 | T-10001_0003 | 17.7 |
7 | T-10001_0004 | 18.1 |
8 | T-10002_0001 | 20.0 |
9 | T-10002_0002 | 16.4 |
10 | T-10002_0003 | 17.6 |
11 | T-10002_0004 | 19.3 |
I am trying to group the thermometers (i.e 'T-10000', 'T-10001', 'T-10002'), and create new columns with the min, max and average of each thermometer reading. So my final data frame would look like this
Index | Thermometer | min_temp | average_temp | max_temp |
---|---|---|---|---|
0 | T-10000 | 10.8 | 12.8 | 14.9 |
1 | T-10001 | 17.7 | 18.5 | 19.8 |
2 | T-10002 | 16.4 | 18.3 | 20.0 |
I tried creating a separate function which I think requires regular expression, but I'm unable to figure out how to go about it. Any help will be much appreciated.
CodePudding user response:
Use groupby
by splitting with your delimiter _
. Then, just aggregate with whatever functions you need.
>>> df.groupby(df['thermometers']\
.str.split('_'). \
.str.get(0)).agg(['min', 'mean', 'max'])
min mean max
thermometers
T-10000 10.8 13.375 15.1
T-10001 17.7 18.475 19.8
T-10002 16.4 18.325 20.0
CodePudding user response:
Another approach with str.extract
to avoid the call to str.get
:
(df['Temperatures']
.groupby(df['thermometers'].str.extract('(^[^_] )', expand=False))
.agg(['min', 'mean'])
)
Output:
min mean
thermometers
T-10000 10.8 13.375
T-10001 17.7 18.475
T-10002 16.4 18.325