I'm trying to summarize a data set with not only total counts per group, but also counts of subsets. So starting with something like this:
df <- data.frame(
Group=c('A','A','B','B','B'),
Size=c('Large','Large','Large','Small','Small')
)
df_summary <- df %>%
group_by(Group) %>%
summarize(group_n=n())
I can get a summary of the number of observations for each group:
> df_summary
# A tibble: 2 x 2
Size size_n
<chr> <int>
1 Large 3
2 Small 2
Is there anyway I can add some sort of subsetting information to n()
to get, say, a count of how many observations per group were Large in this example? In other words, ending up with something like:
Group group_n Large_n
1 A 2 2
2 B 3 1
Thank you!
CodePudding user response:
We could use count
:
count(xyz)
is the same as group_by(xyz) %>% summarise(xyz = n())
library(dplyr)
df %>%
count(Group, Size)
Group Size n
1 A Large 2
2 B Large 1
3 B Small 2
OR
library(dplyr)
library(tidyr)
df %>%
count(Group, Size) %>%
pivot_wider(names_from = Size, values_from = n)
Group Large Small
<chr> <int> <int>
1 A 2 NA
2 B 1 2
CodePudding user response:
I approach this problem using an ifelse
and a sum:
df_summary <- df %>%
group_by(Group) %>%
summarize(group_n=n(),
Large_n = sum(ifelse(Size == "Large", 1, 0)))
The last line turns Size
into a binary indicator taking the value 1
if Size == "Large"
and 0
otherwise. Summing this indicator is equivalent to counting the number of rows with "Large".
CodePudding user response:
df_summary <- df %>%
group_by(Group) %>%
mutate(group_n=n())%>%
ungroup() %>%
group_by(Group,Size) %>%
mutate(Large_n=n()) %>%
ungroup() %>%
distinct(Group, .keep_all = T)
# A tibble: 2 x 4
Group Size group_n Large_n
<chr> <chr> <int> <int>
1 A Large 2 2
2 B Large 3 1