I want to make different date formats the same in my dataframe column.
input:
0 16.09.2014
1 2014-09-16
2 02.12.2014
3 2014-12-02
4 09.01.2018
183 2015-03-30
184 12.04.2017
185 2017-04-12
186 28.12.2018
187 2018-12-28
Name: invoiceDate, Length: 188, dtype: object
but I use:
df['invoiceDate'] = pd.to_datetime(df['invoiceDate'], errors='coerce')
df['invoiceDate'].dt.strftime('%d.%m.%Y')
output: (it writes the first two in the same format but then it goes wrong and gets month by day and month by month.)
0 16.09.2014
1 16.09.2014
2 12.02.2014 (true)
3 02.12.2014 (false)
4 01.09.2018
183 30.03.2015
184 04.12.2017 (true)
185 12.04.2017 (false)
186 28.12.2018
187 28.12.2018
Name: invoiceDate, Length: 188, dtype: object
If the output should be;
output :
0 16.09.2014
1 16.09.2014
2 02.12.2014
3 02.12.2014
4 09.01.2018
183 30.03.2015
184 12.04.2017
185 12.04.2017
186 28.12.2018
187 28.12.2018
Name: invoiceDate, Length: 188, dtype: object
CodePudding user response:
In this particular case, you just need to pass dayfirst=True
to parse the dates as you intend
df['invoiceDate'] = (
pd.to_datetime(df['invoiceDate'], errors='coerce', dayfirst=True)
.dt.strftime('%d.%m.%Y')
)
CodePudding user response:
If you set the column of the dates to = date you could do the following
df['Date'] = pd.to_datetime(df['Date'], infer_datetime_format=True)
from here you can simply tell it the format you want the date to be structured using a strftime
df['Date'] = df['Date'].apply(lambda x : x.strftime('%d.%m.%Y'))