I need to get the max and the min Niveau every hour using python I have an idea but it's not working like I want it give
The code I wrote
import pandas as pd
df=pd.read_csv('Cmaregraphe.csv', sep='[;\s] ', engine='python')
a=df['Niveau'].max()
'''print('max niveau est : ' , a, 'durant la date : ', b )'''
print(df. groupby('Heure').mean())
My Cmaregraphe.csv
Contain 10366 lines here just a caption of it
Date ; Hour; Niveau
02/01/2020;00:00:00;3.75
02/01/2020;00:00:00;3.75
02/01/2020;00:00:00;3.75
02/01/2020;00:00:00;3.75
02/01/2020;00:00:00;3.75
02/01/2020;00:00:00;3.75
02/01/2020;00:00:00;3.75
02/01/2020;00:00:00;3.75
02/01/2020;00:00:00;3.75
02/01/2020;00:00:00;3.77
02/01/2020;00:00:00;3.75
02/01/2020;00:00:00;3.75
02/01/2020;00:01:00;3.75
02/01/2020;00:01:00;3.75
02/01/2020;00:01:00;3.75
02/01/2020;00:01:00;3.75
02/01/2020;00:01:00;3.75
02/01/2020;00:01:00;3.77
02/01/2020;00:01:00;3.75
02/01/2020;00:01:00;3.75
02/01/2020;00:01:00;3.75
02/01/2020;00:01:00;3.75
02/01/2020;00:01:00;3.75
02/01/2020;00:01:00;3.75
02/01/2020;00:02:00;3.75
02/01/2020;00:02:00;3.75
02/01/2020;00:02:00;3.75
02/01/2020;00:02:00;3.75
02/01/2020;00:02:00;3.75
02/01/2020;00:02:00;3.77
02/01/2020;00:02:00;3.77
02/01/2020;00:02:00;3.77
02/01/2020;00:02:00;3.75
02/01/2020;00:02:00;3.75
02/01/2020;00:02:00;3.77
02/01/2020;00:02:00;3.77
02/01/2020;00:03:00;3.77
02/01/2020;00:03:00;3.75
02/01/2020;00:03:00;3.75
02/01/2020;00:03:00;3.75
02/01/2020;00:03:00;3.75
02/01/2020;00:03:00;3.77
02/01/2020;00:03:00;3.75
02/01/2020;00:03:00;3.75
02/01/2020;00:03:00;3.75
02/01/2020;00:03:00;3.75
02/01/2020;00:03:00;3.75
02/01/2020;00:03:00;3.75
02/01/2020;00:04:00;3.75
02/01/2020;00:04:00;3.75
02/01/2020;00:04:00;3.75
02/01/2020;00:04:00;3.75
02/01/2020;00:04:00;3.75
02/01/2020;00:04:00;3.75
02/01/2020;00:04:00;3.75
02/01/2020;00:04:00;3.75
02/01/2020;00:04:00;3.77
02/01/2020;00:04:00;3.77
02/01/2020;00:04:00;3.75
02/01/2020;00:04:00;3.75
02/01/2020;00:05:00;3.77
02/01/2020;00:05:00;3.77
02/01/2020;00:05:00;3.75
02/01/2020;00:05:00;3.75
02/01/2020;00:05:00;3.75
02/01/2020;00:05:00;3.75
02/01/2020;00:05:00;3.75
02/01/2020;00:05:00;3.75
02/01/2020;00:05:00;3.75
02/01/2020;00:05:00;3.77
02/01/2020;00:05:00;3.77
02/01/2020;00:05:00;3.77
02/01/2020;00:06:00;3.75
02/01/2020;00:06:00;3.77
02/01/2020;00:06:00;3.75
02/01/2020;00:06:00;3.75
02/01/2020;00:06:00;3.75
02/01/2020;00:06:00;3.75
02/01/2020;00:06:00;3.75
02/01/2020;00:06:00;3.75
02/01/2020;00:06:00;3.75
02/01/2020;00:06:00;3.75
02/01/2020;00:06:00;3.75
02/01/2020;00:06:00;3.77
02/01/2020;00:07:00;3.75
02/01/2020;00:07:00;3.75
02/01/2020;00:07:00;3.75
02/01/2020;00:07:00;3.75
02/01/2020;00:07:00;3.75
02/01/2020;00:07:00;3.75
02/01/2020;00:07:00;3.75
02/01/2020;00:07:00;3.75
02/01/2020;00:07:00;3.77
02/01/2020;00:07:00;3.75
02/01/2020;00:07:00;3.75
02/01/2020;00:07:00;3.75
02/01/2020;00:08:00;3.75
02/01/2020;00:08:00;3.75
02/01/2020;00:08:00;3.75
02/01/2020;00:08:00;3.75
02/01/2020;00:08:00;3.75
02/01/2020;00:08:00;3.77
02/01/2020;00:08:00;3.77
02/01/2020;00:08:00;3.75
02/01/2020;00:08:00;3.75
02/01/2020;00:08:00;3.75
02/01/2020;00:08:00;3.75
02/01/2020;00:08:00;3.75
02/01/2020;00:09:00;3.75
02/01/2020;00:09:00;3.75
CodePudding user response:
Here is one way to do it
df.groupby(['Date','Hour'])['Niveau'].agg(['min', 'max'])
min max
Date Hour
02/01/2020 00:00:00 3.75 3.77
00:01:00 3.75 3.77
00:02:00 3.75 3.77
00:03:00 3.75 3.77
00:04:00 3.75 3.77
00:05:00 3.75 3.77
00:06:00 3.75 3.77
00:07:00 3.75 3.77
00:08:00 3.75 3.77
00:09:00 3.75 3.75