I am trying to convert a Pytorch script into a Tensorflow script. But I am unable to assign a tensor in tensorflow like pytorch.
Code:
import torch
import tensorflow as tf
def true_positive(pred, target, num_classes): #number of classes
out = []
for i in range(num_classes):
out.append(((pred == i) & (target == i)).sum())
return torch.tensor(out)
Pytorch implementation: Working
p = torch.tensor([1])
t = torch.tensor([2])
n = torch.tensor([2])
y = true_positive(p,t,n)
Tensorflow implementation: Not working!
p = tf.constant([1]) #c = tf.constant([[1.0, 2.0], [3.0, 4.0]])
t = tf.constant([2])
n = tf.constant([2])
y = true_positive(p,t,n)
Error :
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) Input In [18], in <cell line: 22>() 20 t = tf.constant([2]) 21 n = tf.constant([2]) ---> 22 y = true_positive(p,t,n)
Input In [18], in true_positive(pred, target, num_classes) 5 def true_positive(pred, target, num_classes): #number of classes 6 out = [] ----> 7 for i in range(num_classes): 8 out.append(((pred == i) & (target == i)).sum()) 10 return torch.tensor(out)
File ~/opt/anaconda3/lib/python3.9/site-packages/tensorflow/python/framework/ops.py:1131, in _EagerTensorBase.index(self) 1130 def index(self): -> 1131 return self._numpy().index()
TypeError: only integer scalar arrays can be converted to a scalar index
CodePudding user response:
Maybe something like this:
import tensorflow as tf
def true_positive(pred, target, num_classes): #number of classes
out = []
for i in tf.range(num_classes):
out.append(tf.reduce_sum(tf.cast((pred == i) & (target == i), dtype=tf.int32)))
return tf.stack(out)
p = tf.constant([4]) #c = tf.constant([[1.0, 2.0], [3.0, 4.0]])
t = tf.constant([4])
n = tf.constant([4])
y = true_positive(p,t,n)
y
# <tf.Tensor: shape=(4,), dtype=int32, numpy=array([0, 0, 0, 0], dtype=int32)>
CodePudding user response:
This simplified code removes your error. Did you mean to use pytorch
too ?
import tensorflow as tf
p = tf.constant([1])
t = tf.constant([2])
n = tf.constant([2])
def true_positive(pred, target, num_classes): #number of classes
out = []
for i in tf.range(num_classes):
out.append(((pred == i) & (target == i)))
print(out)
y = true_positive(p,t,n)