I have a dataframe like this
country data_fingerprint organization
US 111 Tesco
UK 222 IBM
US 111 Yahoo
PY 333 Tesco
US 111 Boeing
CN 333 TCS
NE 458 Yahoo
UK 678 Tesco
I want those data_fingerprint for where the organisation and country with top 2 counts exists
So if see in organization top 2 occurrences are for Tesco,Yahoo and for country we have US,UK .
So based on that the output of data_fingerprint should be having
data_fingerprint
111
678
What i have tried for organization to exist in my complete dataframe is this
# First find top 2 occurances of organization
nd = df['organization'].value_counts().groupby(level=0, group_keys=False).head(2)
# Then checking if the organization exist in the complete dataframe and filtering those rows
new = df["organization"].isin(nd)
But i am not getting any data here.Once i get data for this I can do it along with country Can someone please help to get me the output.I have less data so using Pandas
CodePudding user response:
Annotated code
# find top 2 most occurring country and organization
i1 = df['country'].value_counts().index[:2]
i2 = df['organization'].value_counts().index[:2]
# Create boolean mask to select the rows having top 2 country and org.
mask = df['country'].isin(i1) & df['organization'].isin(i2)
# filter the rows using the mask and drop dupes in data_fingerprint
df.loc[mask, ['data_fingerprint']].drop_duplicates()
Result
data_fingerprint
0 111
7 678
CodePudding user response:
here is one way to do it
df[
df['organization'].isin(df['organization'].value_counts().head(2).index) &
df['country'].isin(df['country'].value_counts().head(2).index)
]['data_fingerprint'].unique()
array([111, 678], dtype=int64)
CodePudding user response:
You can do
# First find top 2 occurances of organization
nd = df['organization'].value_counts().head(2).index
# Then checking if the organization exist in the complete dataframe and filtering those rows
new = df["organization"].isin(nd)
Output - Only Tesco and Yahoo left
df[new]
country data_fingerprint organization
0 US 111 Tesco
2 US 111 Yahoo
3 PY 333 Tesco
6 NE 458 Yahoo
7 UK 678 Tesco
You can do the same for country