I'm trying to make perfect forwarding work with initializer lists. For the sake of the example, I'd like to have a variadic function that calls into another function, and still enjoy automatic conversion of initializer lists of the latter:
#include <iostream>
#include <vector>
void hello(std::string const& text, std::vector<int> const& test)
{
std::cout << "hello " << text << " " << test.size() << std::endl;
}
template<class ... Args>
void f(Args&& ... args)
{
return hello(std::forward<Args>(args)...);
}
int main()
{
hello("world", {1,2,3}); // WORKS
f("world", std::vector<int>({1,2,3})); // WORKS
f("world", {1,2,3}); // COMPILER ERROR
}
The error is
example.cpp: In function ‘int main()’:
example.cpp:21:21: error: too many arguments to function ‘void f(Args&& ...) [with Args = {}]’
21 | f("world", {1,2,3});
| ^
example.cpp:12:6: note: declared here
12 | void f(Args&& ... args)
| ^
example.cpp: In instantiation of ‘void f(Args&& ...) [with Args = {}]’:
example.cpp:21:21: required from here
example.cpp:14:15: error: too few arguments to function ‘void hello(const string&, const std::vector<int>&)’
14 | return hello(std::forward<Args>(args)...);
| ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
example.cpp:6:6: note: declared here
6 | void hello(std::string const& text, std::vector<int> const& test)
| ^~~~~
Am I making any obvious mistake here?
CodePudding user response:
The compiler is not able to recognize the type you are sending in the third case.
If you use
f("world", std::initializer_list<int>{1,2,3});
everything works.
This post has some detailed explanation and quotes the relevant part of the standard. It is for a slightly different case but the explanation still applies.
CodePudding user response:
The problem is that the {1, 2, 3}
argument to your second call to the templated f
function is not sufficiently 'specific' for the compiler to unambiguously deduce its type in template substitution.
Explicitly defining that argument's type will resolve the issue:
f("world", std::initializer_list<int>{ 1, 2, 3 });
A very similar case is given (as an example of an error) on this cppreference page.