I have the following code where my dataframe contains 3 columns
toBeSummed toBeSummed2 toBesummed3 someColumn
0 X X Y NaN
1 X Y Z NaN
2 Y Y Z NaN
3 Z Z Z NaN
oneframe = pd.concat([df['toBeSummed'],df['toBeSummed2'],df['toBesummed3']], axis=1).reset_index()
temp = oneframe.groupby(['toBeSummed']).size().reset_index()
temp2 = oneframe.groupby(['toBeSummed2']).size().reset_index()
temp3 = oneframe.groupby(['toBeSummed3']).size().reset_index()
temp.columns.values[0] = "SameName"
temp2.columns.values[0] = "SameName"
temp3.columns.values[0] = "SameName"
final = pd.concat([temp,temp2,temp3]).groupby(['SameName']).sum().reset_index()
final.columns.values[0] = "Letter"
final.columns.values[1] = "Sum"
The problem here is that with the code I have, it sums up all instances of each value. Meaning calling final would result in
Letter Sum
0 X 3
1 Y 4
2 Z 5
However I want it to not count more than once if the same value exists in the row (I.e in the first row there are two X's so it would only count the one X) Meaning the desired output is
Letter Sum
0 X 2
1 Y 3
2 Z 3
I can update or add more comments if this is confusing.
CodePudding user response:
Given df
:
toBeSummed toBeSummed2 toBesummed3 someColumn
0 X X Y NaN
1 X Y Z NaN
2 Y Y Z NaN
3 Z Z Z NaN
Doing:
sum_cols = ['toBeSummed', 'toBeSummed2', 'toBesummed3']
out = df[sum_cols].apply(lambda x: x.unique()).explode().value_counts()
print(out.to_frame('Sum'))
Output:
Sum
Y 3
Z 3
X 2