docker run --gpus '"'device=$CUDA_VISIBLE_DEVICES'"' --ipc=host --rm -it \
--mount src=$(pwd),dst=/src,type=bind \
--mount src=$OUTPUT,dst=/storage,type=bind \
--mount src=$PRETRAIN_DIR,dst=/pretrain,type=bind,readonly \
--mount src=$TXT_DB,dst=/txt,type=bind,readonly \
--mount src=$IMG_DIR,dst=/img,type=bind,readonly \
-e NVIDIA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES \
-w /src chenrocks/uniter
When I run this file, it prints error
NVIDIA Release 19.05 (build 6411784) PyTorch Version 1.1.0a0 828a6a3
...
WARNING: Detected NVIDIA NVIDIA GeForce RTX 3090 GPU, which is not yet supported in this version of the container
ERROR: No supported GPU(s) detected to run this container
it doesn't fit with my NVIDIA GeForce RTX 3090 GPU so I want to change version to 22.05 but when I run this,
docker run --gpus '"'device=$CUDA_VISIBLE_DEVICES'"' --ipc=host --rm
-it nvcr.io/nvidia/pytorch:22.05-py3 \
--mount src=$(pwd),dst=/src,type=bind \
--mount src=$OUTPUT,dst=/storage,type=bind \
--mount src=$PRETRAIN_DIR,dst=/pretrain,type=bind,readonly \
--mount src=$TXT_DB,dst=/txt,type=bind,readonly \
--mount src=$IMG_DIR,dst=/img,type=bind,readonly \
-e NVIDIA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES \
-w /src chenrocks/uniter
it prints error
/opt/nvidia/nvidia_entrypoint.sh: line 49: exec: --: invalid option
exec: usage: exec [-cl] [-a name] [command [arguments ...]] [redirection ...]
I'd really appreciate it if you could tell me how to change the version.
CodePudding user response:
Your second second docker run
command specifies 2 images:
docker run ... nvcr.io/nvidia/pytorch:22.05-py3 chenrocks/uniter
You can only pass one.
Also note the general format of the docker run
command:
$ docker run [OPTIONS] IMAGE [COMMAND] [ARG...]
UPDATE
But if the docker image's nvidia/pytorch version doesn't fit my GPU, can I not use that docker image? Or is there something I can do?
You could try editing the Dockerfile
of the referenced project to build a custom docker image.
Something like this:
git clone https://github.com/ChenRocks/UNITER.git
cd UNITER
# replace the first line of the Dockerfile with:
# FROM nvcr.io/nvidia/pytorch:22.05-py3
docker build .
# ...
# Successfully built <image_id>
Then simply edit your docker run
command to use your custom built image:
docker run ... <image_id>
It looks like that at least one other person had a similar issue. Unfortunately the project is not actively maintained so it's difficult to get any kind of support when trying to make it work with the latest hardware.