I have created a data frame as follows in PySpark:
from pyspark.sql.types import StructType, StructField, StringType, IntegerType
data_1 = [
("rule1", "", "1", "2", "3", "4"),
("rule2", "1", "3", "5", "6", "4"),
("rule3", "", "0", "1", "2", "5"),
("rule4", "0", "1", "3", "6", "2"),
]
schema = StructType(
[
StructField("_c0", StringType(), True),
StructField("para1", StringType(), True),
StructField("para2", StringType(), True),
StructField("para3", StringType(), True),
StructField("para4", StringType(), True),
StructField("para5", StringType(), True),
]
)
df = spark.createDataFrame(data=data_1,schema=schema)
This gives:
----- ----- ----- ----- ----- -----
|_c0 |para1|para2|para3|para4|para5|
----- ----- ----- ----- ----- -----
|rule1| |1 |2 |3 |4 |
|rule2|1 |3 |5 |6 |4 |
|rule3| |0 |1 |2 |5 |
|rule4|0 |1 |3 |6 |2 |
----- ----- ----- ----- ----- -----
I want to convert it into a dictionary like this:
dict = {'rule1': {'para2': '1', 'para3': '2','para4': '3','para5': '4'},
'rule2': {'para1': '1', 'para2': '3','para3': '5','para4': '6','para5': '4'}, ...}
The columns with empty ""
values should not appear in the final dictionary, e.g. in the dictionary for "rule1", "para1" is not present. The rest are all present.
I tried this as an initial code, but it is unsatisfactory:
dict1 = df.rdd.map(lambda row: row.asDict()).collect()
final_dict = {d['_c0']: d[col] for d in dict1 for col in df.columns}
# Returns {'rule1': '4', 'rule2': '4', 'rule3': '5', 'rule4': '2'}
CodePudding user response:
You can try these nested dictionary comprehensions:
dict_rules = {r['_c0']: {k: v
for k, v in r.asDict().items()
if k != '_c0' and v != ''}
for r in df.collect()}
# {'rule1': {'para2': '1', 'para3': '2', 'para4': '3', 'para5': '4'},
# 'rule2': {'para1': '1', 'para2': '3', 'para3': '5', 'para4': '6', 'para5': '4'},
# 'rule3': {'para2': '0', 'para3': '1', 'para4': '2', 'para5': '5'},
# 'rule4': {'para1': '0', 'para2': '1', 'para3': '3', 'para4': '6', 'para5': '2'}}