I am trying to create new dataframe out of the dictionary which includes lists.
It looks like something like that:
{'prices': [[1574121600000, 1.000650588888066], [1574208000000, 0.9954110116644869]...
Those are UNIX date and price of stablecoins, however the columns are not named properly as it is all under 'prices' key.
However how could I create a new df which would include 2 columns (Date, Price) using values from this dictionary?
My goal is to get something like this:
| Date | Price |
| 15741216000000 | 1.000650588888066 |
| 15742080000000 | 0.9954110116644869 |
CodePudding user response:
You can use pd.Dataframe directly and then pass a list of column names to the parameter columns
import pandas as pd
a = {'prices': [[1574121600000, 1.000650588888066], [1574208000000, 0.9954110116644869]]}
df = pd.DataFrame(a['prices'], columns=['Date', 'Price'])
print(df)
# prints
Date Price
0 1574121600000 1.000651
1 1574208000000 0.995411
CodePudding user response:
d = {'prices': [[1574121600000, 1.000650588888066], [1574208000000, 0.9954110116644869]}
df = {"date":[],"prices":[]}
for k,v in d.items():
for item in v:
df["date"].append(item[0])
df["prices"].append(item[1])
dataframe = pd.DataFrame(df)