Having two data frame as below:
data frame:1
new_data = {
"Fruits": ['AB', 'AB','BC', 'CD','DE','EG'],
"price": [50, 30, 45,55,47,43]
}
new_df = pd.DataFrame(new_data)
print(new_df)
dataframe:2
import pandas as pd
data = {
"Food": ['AB','AB','BC', 'CE','DE','EF','EM','FB'],
"Calories": [150, 405, 450,55,47,43,43,23]
}
#load data into a DataFrame object:
df = pd.DataFrame(data)
print(df)
need to return the unique values in dataframe1, comparing with the food column in dataframe2.
Expected output
Fruit Price
0 AB 50
1 AB 30
2 BC 45
3 DE 47
return the first dataframe where the food values is in fruit value
CodePudding user response:
You can use .loc[]
with .isin()
to check if a value in the Fruits from new_df exist in the Food column of df:
new_df.loc[new_df['Fruits'].isin(df['Food'])]
Fruits price
0 AB 50
1 AB 30
2 BC 45
4 DE 47