The expectation here is that the attention is applied on the 2nd dimension (4, 5, 20, 64). I am trying to apply self attention using the following code (issue reproducible with this code):
import numpy as np
import tensorflow as tf
from keras import layers as tfl
class Encoder(tfl.Layer):
def __init__(self,):
super().__init__()
self.embed_layer = tfl.Embedding(4500, 64, mask_zero=True)
self.attn_layer = tfl.MultiHeadAttention(num_heads=2,
attention_axes=2,
key_dim=16)
return
def call(self, x):
# Input shape: (4, 5, 20) (Batch size: 4)
x = self.embed_layer(x) # Output: (4, 5, 20, 64)
x = self.attn_layer(query=x, key=x, value=x) # Output: (4, 5, 20, 64)
return x
eg_input = tf.constant(np.random.randint(0, 150, (4, 5, 20)))
enc = Encoder()
enc(eg_input)
However, the above layer defined throws the following error. Could someone please explain why is this happening & how to fix this?
{{function_node __wrapped__AddV2_device_/job:localhost/replica:0/task:0/device:CPU:0}} Incompatible shapes: [4,5,2,20,20] vs. [4,5,1,5,20] [Op:AddV2]
Call arguments received by layer 'softmax_2' (type Softmax):
• inputs=tf.Tensor(shape=(4, 5, 2, 20, 20), dtype=float32)
• mask=tf.Tensor(shape=(4, 5, 1, 5, 20), dtype=bool)
PS: If I set mask_zero = False
in defining the embedding layer, the code runs fine as expected without any issues.
CodePudding user response:
Just concat the input along axis=0
import numpy as np
import tensorflow as tf
from keras import layers as tfl
class Encoder(tfl.Layer):
def __init__(self,):
super().__init__()
self.embed_layer = tfl.Embedding(4500, 64, mask_zero=True)
self.attn_layer = tfl.MultiHeadAttention(num_heads=2,
key_dim=16,
attention_axes=2)
def call(self, x):
x = self.embed_layer(x) # Output: (4, 5, 20, 32)
x = tf.concat(x, axis=0)
x, attention_scores = self.attn_layer(query=x, key=x, value=x , return_attention_scores=True) # Output: (4, 5, 20, 32)
return x , attention_scores
eg_input = tf.constant(np.random.randint(0, 150, (4, 5, 20)))
enc = Encoder()
scores , attentions = enc(eg_input)
scores.shape , attentions.shape
#(TensorShape([4, 5, 20, 64]), TensorShape([4, 5, 2, 20, 20]))