I am developing the code for my PIC32MK1024MCM project. I have already tested the code well and now I am only putting all the code modules into the final project (the code is not complete in this example yet, but the functionality is not the axis of interest here). For the first time in my life, I wanted to make it a little bit more professional and use separate source and header files for all the different module function declaration. However, I am clearly facing some kind of syntax problem, because I am getting errors in almost every line of the source file (I guess I have to include something in that source file, but I am not sure) Like I said, it is my very first time facing header and source files, so could you please help me, or at least hint me, what is it that I am missing so obviously? I want to thank you in advance.
main:
#include <xc.h>
#include <configuration_bits.c>
#include <toolchain_specifics.h>
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include "stdio.h"
#include <sys/attribs.h>
#include <analog_to_digital_conversion.h>
void main(void) {
while (1){
}
return (EXIT_FAILURE);
}
configurations_bits
// DEVCFG3
#pragma config USERID = 0xFFFF // Enter Hexadecimal value (Enter Hexadecimal value)
#pragma config PWMLOCK = OFF // PWM IOxCON lock (PWM IOxCON register writes accesses are not locked or protected)
#pragma config FUSBIDIO2 = OFF // USB2 USBID Selection (USBID pin is controlled by the port function)
#pragma config FVBUSIO2 = OFF // USB2 VBUSON Selection bit (VBUSON pin is controlled by the port function)
#pragma config PGL1WAY = OFF // Permission Group Lock One Way Configuration bit (Allow multiple reconfigurations)
#pragma config PMDL1WAY = OFF // Peripheral Module Disable Configuration (Allow multiple reconfigurations)
#pragma config IOL1WAY = OFF // Peripheral Pin Select Configuration (Allow multiple reconfigurations)
#pragma config FUSBIDIO1 = OFF // USB1 USBID Selection (USBID pin is controlled by the port function)
#pragma config FVBUSIO1 = OFF // USB2 VBUSON Selection bit (VBUSON pin is controlled by the port function)
// DEVCFG2
#pragma config FPLLIDIV = DIV_1 // System PLL Input Divider (1x Divider)
#pragma config FPLLRNG = RANGE_BYPASS // System PLL Input Range (Bypass)
#pragma config FPLLICLK = PLL_POSC // System PLL Input Clock Selection (POSC is input to the System PLL)
#pragma config FPLLMULT = MUL_4 // System PLL Multiplier (PLL Multiply by 4)
#pragma config FPLLODIV = DIV_2 // System PLL Output Clock Divider (2x Divider)
#pragma config BORSEL = HIGH // Brown-out trip voltage (BOR trip voltage 2.1v (Non-OPAMP deviced operation))
#pragma config UPLLEN = OFF // USB PLL Enable (USB PLL Disabled)
// DEVCFG1
#pragma config FNOSC = POSC // Oscillator Selection Bits (Primary Osc (HS,EC))
#pragma config DMTINTV = WIN_0 // DMT Count Window Interval (Window/Interval value is zero)
#pragma config FSOSCEN = OFF // Secondary Oscillator Enable (Disable Secondary Oscillator)
#pragma config IESO = ON // Internal/External Switch Over (Enabled)
#pragma config POSCMOD = HS // Primary Oscillator Configuration (HS osc mode)
#pragma config OSCIOFNC = OFF // CLKO Output Signal Active on the OSCO Pin (Disabled)
#pragma config FCKSM = CSDCMD // Clock Switching and Monitor Selection (Clock Switch Disabled, FSCM Disabled)
#pragma config WDTPS = PS1 // Watchdog Timer Postscaler (1:1)
#pragma config WDTSPGM = STOP // Watchdog Timer Stop During Flash Programming (WDT stops during Flash programming)
#pragma config WINDIS = NORMAL // Watchdog Timer Window Mode (Watchdog Timer is in non-Window mode)
#pragma config FWDTEN = OFF // Watchdog Timer Enable (WDT Disabled)
#pragma config FWDTWINSZ = WINSZ_25 // Watchdog Timer Window Size (Window size is 25%)
#pragma config DMTCNT = DMT31 // Deadman Timer Count Selection (2^31 (2147483648))
#pragma config FDMTEN = OFF // Deadman Timer Enable (Deadman Timer is disabled)
// DEVCFG0
#pragma config DEBUG = OFF // Background Debugger Enable (Debugger is disabled)
#pragma config JTAGEN = OFF // JTAG Enable (JTAG Disabled)
#pragma config ICESEL = ICS_PGx1 // ICE/ICD Comm Channel Select (Communicate on PGEC1/PGED1)
#pragma config TRCEN = OFF // Trace Enable (Trace features in the CPU are disabled)
#pragma config BOOTISA = MIPS32 // Boot ISA Selection (Boot code and Exception code is MIPS32)
#pragma config FECCCON = ECC_DECC_DISABLE_ECCON_WRITABLE // Dynamic Flash ECC Configuration Bits (ECC and Dynamic ECC are disabled (ECCCON<1:0> bits are writable))
#pragma config FSLEEP = OFF // Flash Sleep Mode (Flash is powered down when the device is in Sleep mode)
#pragma config DBGPER = PG_ALL // Debug Mode CPU Access Permission (Allow CPU access to all permission regions)
#pragma config SMCLR = MCLR_NORM // Soft Master Clear Enable (MCLR pin generates a normal system Reset)
#pragma config SOSCGAIN = G3 // Secondary Oscillator Gain Control bits (Gain is G3)
#pragma config SOSCBOOST = ON // Secondary Oscillator Boost Kick Start Enable bit (Boost the kick start of the oscillator)
#pragma config POSCGAIN = G3 // Primary Oscillator Coarse Gain Control bits (Gain Level 3 (highest))
#pragma config POSCBOOST = ON // Primary Oscillator Boost Kick Start Enable bit (Boost the kick start of the oscillator)
#pragma config POSCFGAIN = G3 // Primary Oscillator Fine Gain Control bits (Gain is G3)
#pragma config POSCAGCDLY = AGCRNG_x_25ms // AGC Gain Search Step Settling Time Control (Settling time = 25ms x AGCRNG)
#pragma config POSCAGCRNG = ONE_X // AGC Lock Range bit (Range 1x)
#pragma config POSCAGC = Automatic // Primary Oscillator Gain Control bit (Automatic Gain Control for Oscillator)
#pragma config EJTAGBEN = NORMAL // EJTAG Boot Enable (Normal EJTAG functionality)
// DEVCP
#pragma config CP = OFF // Code Protect (Protection Disabled)
// SEQ
#pragma config TSEQ = 0xFFFF // Boot Flash True Sequence Number (Enter Hexadecimal value)
#pragma config CSEQ = 0xFFFF // Boot Flash Complement Sequence Number (Enter Hexadecimal value)
analog_to_digital_conversion.h
//**************************************************************************
// ANALOG TO DIGITAL CONVERSION HEADER FILE
//**************************************************************************
#include <analog_to_digital_conversion.c>
void Anaolog_to_Digital_Conversion_Setup (void);
void Anaolog_to_Digital_Conversion_Enable (void);
void Anaolog_to_Digital_Conversion_Disable (void);
uint16_t Anaolog_to_Digital_Conversion (void);
analog_to_digital_conversion.c
//**************************************************************************
// ANALOG TO DIGITAL CONVERSION SOURCE FILE
//**************************************************************************
void Anaolog_to_Digital_Conversion_Setup (void){
//All this procedure is taken from the device`s datasheet (no ADC interrupts are desired)
ADCANCONbits.ANEN5 = 0b0; //Analog and bias circuitry disabled (to set calibration)
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
ADC5CFGbits.ADCCFG = DEVADC5; //Copying the factory calibration ADC module bits to the ADC configuration register
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
ADCCON1bits.ON = 0b0; //Disabling the ADC module
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
ADC5TIMEbits.SAMC = 0b1111111111; //Sample time is set to 1025 TAD
ADC5TIMEbits.ADCDIV = 0b1111111; //254 * TQ = TAD (ADC clock division bits)
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
ADCANCONbits.WKUPCLKCNT = 0xF; //ADC warm up time is set to 32768 ADC clock cycles (maximum warm up time, around 32 us @ 100 MHz SYSCLK)
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
ADCCON3bits.ADCSEL = 0b0; //Analog-to-Digital Clock Source (TCLK) -> SYSCLK
ADCCON3bits.CONCLKDIV = 0b000000; //TCLK = TQ
ADCCON3bits.DIGEN5 = 0b0; //All digital bits are disabled (according to the datasheet)
ADCCON3bits.VREFSEL = 0b000; //Vref is set to AVdd and AVss
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
ADCIMCON1bits.DIFF11 = 0b0; //AN11 is using Single-ended mode
ADCIMCON1bits.SIGN11 = 0b0; //AN11 is using Unsigned Data mode
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
ADCTRGSNSbits.LVL11 = 0b0; //Analog input is sensitive to the positive edge of its trigger (this is the value after a reset)
//---------------------------------------------------------------
ADCTRG3bits.TRGSRC11 = 0b00001; //AN11 is software triggered
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
ADCANCONbits.ANEN5 = 0b1; //Analog and bias circuitry enabled
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
ADCCON1bits.ON = 0b1; //Enabling the ADC module
//---------------------------------------------------------------
while(!((ADCCON2bits.BGVRRDY)&&(ADCANCONbits.WKRDY5))); //Wait until device analog environment is ready
ADCCON3bits.DIGEN5 = 0b1; //Enable digital circuitry for data processing
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
ADCCON3bits.ADINSEL = 0b001011; //Select analog channel 11 for conversion
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
ADCCON1bits.ON = 0b0; //Disabling the ADC module
}
void Anaolog_to_Digital_Conversion_Enable (void){
ADCCON1bits.ON = 0b1; //Enabling the ADC module
}
void Anaolog_to_Digital_Conversion_Disable (void){
ADCCON1bits.ON = 0b0; //Disabling the ADC module
}
uint16_t Anaolog_to_Digital_Conversion (void){
uint16_t ADC_value = 0;
ADCCON3bits.RQCNVRT = 1; //Trigger the conversion
while(!ADCDSTAT1bits.ARDY11); //Waiting until ADC result is ready to be read (@ 100 MHz SYSCLK ADC conversion should take around 2ms)
ADC_value = ADCDATA11 & 0x000FFFF; //Acquiring ADC result, register is 32 bits, but conversion only gives 12 bit ADC value, hence getting rid of higher 16 bits (those are all zeros)
return (ADC_value);
}
CodePudding user response:
As per the files in your question the inclusion should be done using header files since this is the common practice.
First of all you need to include the xc.h header in each file you use the processor specific definitions like special fuunction register and bit names.
Other dependencies for your program, might be anything from the standard C library like printf
from the stdio.h header or uint8_t
from the stdint.h header; or any library functions that you wrote for the application and so on.
Here is a trick for you: If you use MPLAB editor to write code, after typing a few letters of a function for example, you hit the Ctrl Space
then MPLAB editor will popup possible functions. When you select one of them from the popup list end hit the enter, it will add its header file automatically.
Now let's get back to your case. Your main file looks ok except stdio.h inclusion. You must change #include "stdio.h"
to #include <stdio.h>
.
Your adc.c file must have some includes as I mentioned above. First of all it must include the xc.h header. And you don't have to include the *.c file in the *.h file. I also recommend you to use header guards to prevent any possible nested inclusion, resulting in redefiniton errors.
analog_to_digital_conversion.h
// Header guard
#ifndef ANALOG_TO_DIGITAL_CONVERSION_H
#define ANALOG_TO_DIGITAL_CONVERSION_H
//**************************************************************************
// ANALOG TO DIGITAL CONVERSION HEADER FILE
//**************************************************************************
// #include <analog_to_digital_conversion.c> not needed here.
void Anaolog_to_Digital_Conversion_Setup (void);
void Anaolog_to_Digital_Conversion_Enable (void);
void Anaolog_to_Digital_Conversion_Disable (void);
uint16_t Anaolog_to_Digital_Conversion (void);
#endif /* ANALOG_TO_DIGITAL_CONVERSION_H */
analog_to_digital_conversion.c
//**************************************************************************
// ANALOG TO DIGITAL CONVERSION SOURCE FILE
//**************************************************************************
// include xc header for processor register and bit names
#include <xc.h>
// since you use uint16_t, you must include stdint header
#include <stdint.h>
// Finally include your own header for any further definitions
#include "analog_to_digital_conversion.h"
void Anaolog_to_Digital_Conversion_Setup (void){
//All this procedure is taken from the device`s datasheet (no ADC interrupts are desired)
ADCANCONbits.ANEN5 = 0b0; //Analog and bias circuitry disabled (to set calibration)
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
ADC5CFGbits.ADCCFG = DEVADC5; //Copying the factory calibration ADC module bits to the ADC configuration register
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
ADCCON1bits.ON = 0b0; //Disabling the ADC module
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
ADC5TIMEbits.SAMC = 0b1111111111; //Sample time is set to 1025 TAD
ADC5TIMEbits.ADCDIV = 0b1111111; //254 * TQ = TAD (ADC clock division bits)
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
ADCANCONbits.WKUPCLKCNT = 0xF; //ADC warm up time is set to 32768 ADC clock cycles (maximum warm up time, around 32 us @ 100 MHz SYSCLK)
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
ADCCON3bits.ADCSEL = 0b0; //Analog-to-Digital Clock Source (TCLK) -> SYSCLK
ADCCON3bits.CONCLKDIV = 0b000000; //TCLK = TQ
ADCCON3bits.DIGEN5 = 0b0; //All digital bits are disabled (according to the datasheet)
ADCCON3bits.VREFSEL = 0b000; //Vref is set to AVdd and AVss
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
ADCIMCON1bits.DIFF11 = 0b0; //AN11 is using Single-ended mode
ADCIMCON1bits.SIGN11 = 0b0; //AN11 is using Unsigned Data mode
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
ADCTRGSNSbits.LVL11 = 0b0; //Analog input is sensitive to the positive edge of its trigger (this is the value after a reset)
//---------------------------------------------------------------
ADCTRG3bits.TRGSRC11 = 0b00001; //AN11 is software triggered
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
ADCANCONbits.ANEN5 = 0b1; //Analog and bias circuitry enabled
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
ADCCON1bits.ON = 0b1; //Enabling the ADC module
//---------------------------------------------------------------
while(!((ADCCON2bits.BGVRRDY)&&(ADCANCONbits.WKRDY5))); //Wait until device analog environment is ready
ADCCON3bits.DIGEN5 = 0b1; //Enable digital circuitry for data processing
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
ADCCON3bits.ADINSEL = 0b001011; //Select analog channel 11 for conversion
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
ADCCON1bits.ON = 0b0; //Disabling the ADC module
}
void Anaolog_to_Digital_Conversion_Enable (void){
ADCCON1bits.ON = 0b1; //Enabling the ADC module
}
void Anaolog_to_Digital_Conversion_Disable (void){
ADCCON1bits.ON = 0b0; //Disabling the ADC module
}
uint16_t Anaolog_to_Digital_Conversion (void){
uint16_t ADC_value = 0;
ADCCON3bits.RQCNVRT = 1; //Trigger the conversion
while(!ADCDSTAT1bits.ARDY11); //Waiting until ADC result is ready to be read (@ 100 MHz SYSCLK ADC conversion should take around 2ms)
ADC_value = ADCDATA11 & 0x000FFFF; //Acquiring ADC result, register is 32 bits, but conversion only gives 12 bit ADC value, hence getting rid of higher 16 bits (those are all zeros)
return (ADC_value);
}
You must use the same inclusion logic for each *.c & *.h file pair that you add to your project.
CodePudding user response:
Separate compilation requires visibility of external symbols. For example in analog_to_digital_conversion.c where ADCANCONbits
is referenced, the compiler needs to see at least a declaration of ADCANCONbits
so that it knows that the symbol exists and what its type is. The actual linkage and resolution to a definition occurs when the linker pulse the object code from each separately compiled translation unit together.
You resolve undeclared identifier errors by providing the declaration. In this case that declaration exists inside a header file that you must #include
in every translation unit that references it. I am not familiar with PIC32 development, but would imagine that header is xc.h
Yoiu have a number of other issues, for example analog_to_digital_conversion.h referenced uint16_t
but does not include <stdint.h> where that type is defined. You may get away with it due to inclusion in other modules, but you should not rely on it.
Also all header files require guards to avoid multiple declarations when included more than once in the same translation unit - which can easily happen when you have nested includes for example.