I have a dataframe
fruit1 fruit2
[banana,apple,orange] [apple,nuts,strawberry]
[apple,mango,grape] [apple,mango,grape,guava]
My code for adding the two additional columns is
df["fruits_added"] = df.apply(lambda row: set(row.fruit2) - set(row.fruit1), axis=1)
df["fruits_deleted"] = df.apply(lambda row: set(row.fruit1) - set(row.fruit2), axis=1)
My desired output is
fruit1 fruit2 fruits_added fruits_deleted
[banana,apple,orange] [apple,nuts,strawberry] [strawberry,nuts] [banana,orange]
[apple,mango,grape] [apple,mango,grape,guava] [guava] []
but I am getting dictionaries instead
fruit1 fruit2 fruits_added fruits_deleted
[banana,apple,orange] [apple,nuts,strawberry] {strawberry,nuts} {banana,orange}
[apple,mango,grape] [apple,mango,grape,guava] {guava} {}
Any input is appreciated
CodePudding user response:
Convert sets to lists:
df["fruits_added"] = df.apply(lambda row: list(set(row.fruit2) - set(row.fruit1)), axis=1)
df["fruits_deleted"] = df.apply(lambda row: list(set(row.fruit1) - set(row.fruit2)), axis=1)
Alternative solution:
zipped = zip(df['fruit1'], df['fruit2'])
df["fruits_added"] = [list(set(y) - set(x)) for x, y in zipped]
df["fruits_deleted"] = [list(set(x) - set(y)) for x, y in zipped]
CodePudding user response:
You can use np.setdiff1d
df['fruits_deleted'] = df.apply(lambda x: np.setdiff1d(x.fruit1, x.fruit2), axis=1)
df['fruits_added'] = df.apply(lambda x: np.setdiff1d(x.fruit2, x.fruit1), axis=1)