I have two dataframes like this
df1 = time, lat, lon, lev, val1
1 10 10 1 10
df2 = time, lat, lon, lev, val2
1 10 10 2 20
where the first four columns are basically coordinates, then I would like to combine/merge them so that the output is this:
df_total = time, lat, lon, lev, val1, val2
1 10 10 1 10 nan
1 10 10 2 nan 20
I am having trouble since none of the dataframes have matching values in the 'lev' column, but both dataframes have values in 'lev.' When I join on all four columns, the output dataframe is, of course, empty, but when I join on the columns time, lat, and lon, I don't get the behaviour I expect (I get a lev_x and lev_y and it puts the val1 and val2 in the same row). So, how can this be done?
CodePudding user response:
Use from this code
a = pd.concat([df1, df2], ignore_index=True)
CodePudding user response:
Merely do the following :
import pandas as pd
df1 = pd.DataFrame({'time': [1], 'lat':10, 'lon':10, 'lev':1, 'val1':10})
df2 = pd.DataFrame({'time': [1], 'lat':10, 'lon':10, 'lev':2, 'val2':20})
df = df1.append(df2)
Result
time lat lon lev val1 val2
0 1 10 10 1 10.0 NaN
0 1 10 10 2 NaN 20.0
if you absolutely want to convert all non-null elements to integers consider using instead :
df = df1.append(df2).astype('Int64')
# time lat lon lev val1 val2
# 0 1 10 10 1 10 <NA>
# 0 1 10 10 2 <NA> 20