I'm trying to convert/cast a column within a data frame from string to date with no success, here is part of the code:
from pyspark.sql.functions import from_unixtime, unix_timestamp, col
from datetime import datetime
## Dynamyc Frame to Data Frame
df = Transform0.toDF()
## Substring of time column
## Before: "Thu Sep 03 2020 01:43:52 GMT 0000 (Coordinated Universal Time)""
df = df.withColumn('date_str', substring(df['time'],5,20))
## After: "Sep 03 2020 01:43:52"
## I have tried the following statements with no success
## I use show() in order to see in logs the result
df.withColumn('date_str', datetime.strptime('date_str', '%b %d %Y %H:%M:%S')).show()
df.withColumn(col('date_str'), from_unixtime(unix_timestamp(col('date_str'),"%b %d %Y %H:%M:%S"))).show()
df.withColumn('date_str', to_timestamp('date_str', '%b %d %Y %H:%M:%S')).show()
CodePudding user response:
You are supposed to assign it to another data frame variable .
eg:
df = df.withColumn(column, from_unixtime(unix_timestamp(col('date_str'), 'yyyy/MM/dd hh:mm:ss')).cast(
types.TimestampType()))
df.show()
CodePudding user response:
Try using spark datetime formats while using spark functions to_timestamp()...etc
functions.
Example:
df.show()
# --------------------
#| ts|
# --------------------
#|Sep 03 2020 01:43:52|
# --------------------
df.withColumn("ts1",to_timestamp(col("ts"),"MMM dd yyyy hh:mm:ss")).show()
# -------------------- -------------------
#| ts| ts1|
# -------------------- -------------------
#|Sep 03 2020 01:43:52|2020-09-03 01:43:52|
# -------------------- -------------------