Home > OS >  How to move particular values of one dataframe to another if we cannot use index column?
How to move particular values of one dataframe to another if we cannot use index column?

Time:09-30

I have 2 DataFrames: 'data_test' and 'data'. I need to add column 'final_output_ratio' to data_test, but only if value of column 'date' is the same for both (so I need to add only 3 values from data). DataFrames are:

data_test={'date':['2016-09-01 00:59:59','2016-09-01 01:59:59','2016-09-01 02:59:59'],
              'stage_1_output':[0.88,0.91,0.82],
              'stage_2_output':[0.91,0.95,0.87]}
data_test=pd.DataFrame(data=data_test)
data_test

date    stage_1_output  stage_2_output
0   2016-09-01 00:59:59 0.88    0.91
1   2016-09-01 01:59:59 0.91    0.95
2   2016-09-01 02:59:59 0.82    0.87
data={'date':['2016-09-01 00:59:59','2016-09-01 01:59:59','2016-09-01 02:59:59','2017-09-01 02:59:59','2017-09-01 03:14:59'],
              'stage_1_output':[0.88,0.91,0.82,0.88,0.92],
              'stage_2_output':[0.91,0.95,0.87,0.85,0.9],
              'final_output_ratio':[0.22,0.17,0.14,0.18,0.24]   }
data=pd.DataFrame(data=data)

    date    stage_1_output  stage_2_output  final_output_ratio
0   2016-09-01 00:59:59 0.88    0.91    0.22
1   2016-09-01 01:59:59 0.91    0.95    0.17
2   2016-09-01 02:59:59 0.82    0.87    0.14
3   2017-09-01 02:59:59 0.88    0.85    0.18
4   2017-09-01 03:14:59 0.92    0.90    0.24

I am trying this:

data_test['final_output_ratio']=data['final_output_ratio'].loc[data['date']==data_test['date']]

And get an error: ValueError: Can only compare identically-labeled Series objects

What can solve the problem?

CodePudding user response:

Use pd.merge on date with how='left' parameter:

>>> pd.merge(data_test, data[['date', 'final_output_ratio']], how='left', on='date')

                  date  stage_1_output  stage_2_output  final_output_ratio
0  2016-09-01 00:59:59            0.88            0.91                0.22
1  2016-09-01 01:59:59            0.91            0.95                0.17
2  2016-09-01 02:59:59            0.82            0.87                0.14
  • Related