I was using this to find the first non null value of a string:
def get_first_non_null_values(df):
first_non_null_values = []
try:
kst = df['kst'].loc[df['kst'].first_valid_index()]
first_non_null_values.append(kst)
except:
kst = df['kst22'].loc[df['kst22'].first_valid_index()]
first_non_null_values.append(kst)
return first_non_null_values
first_non_null_values = get_first_non_null_values(df_merged)
This worked but now in my new dataset, I have some null values and some ""
empty strings. How can I modify this such that I can extract the first value which is neither null not an empty string
CodePudding user response:
I think u need:
df = pd.DataFrame({'col': ['', np.nan, '', 1, 2, 3]})
print(df['col'].loc[df['col'].replace('', np.nan).first_valid_index()])
CodePudding user response:
You can use a combination of notnull
/astype(bool)
and idxmax
:
(df['col'].notnull()&df['col'].astype(bool)).idxmax()
Example input:
>>> df = pd.DataFrame({'col': ['', float('nan'), False, None, 0, 'A', 3]})
>>> df
col
0
1 NaN
2 False
3 None
4 0
5 A
6 3
output: 5
null and truthy states:
col notnull astype(bool) both
0 True False False
1 NaN False True False
2 False True False False
3 None False False False
4 0 True False False
5 A True True True
6 3 True True True
first non empty string value:
If you're only interesting in strings that are not empty:
df['col'].str.len().gt(0).idxmax()