I have two Pandas Data Frame in Python like below:
df1
ID
----
11
22
33
44
df2
ID1 ID2 ID3
--------------------
11 | 5 | 114
88 | 22 | 18
99 | 45 | 33
- df1 has more rows than df2
- types of values in boths Data Frames is int
I need to do something like df1 LEFT JOIN df2 and merge df1 with df2 using "ID" from df1 and "ID1", "ID2", "ID3" from df2
- merge Data Frames on ID (df1) and ID1 (df2)
- if ID does not merge with ID1 --> merge on ID and ID2
- if ID does not merge with ID2 --> merge on ID and ID3
- give 123456 if rows does not merge
So as a result I need something like below:
ID ID1 ID2 ID3
--------------------------
11 | 11 | 5 | 114
22 | 88 | 22 | 18
33 | 99 | 45 | 33
44 | 123456 | 123456 | 123456
How can I do that in Python Pandas ? I totally do not know.
CodePudding user response:
You can stack df2
to becomes df2a
, then left join df1
with df2a
followed by left join original df2
matching the original index. Fill NaN
with 123456
and drop intermediate columns to arrive at the desired output:
df2a = df2.stack().reset_index(name='ID')
df_out = (df1.merge(df2a, on='ID', how='left')
.merge(df2, left_on='level_0', right_index=True, how='left')
.fillna(123456, downcast='infer')
.drop(['level_0', 'level_1'], axis=1)
)
or simplify the second .merge
with .join
(thanks for the suggestion of @HenryEcker), as follows:
df2a = df2.stack().reset_index(name='ID')
df_out = (df1.merge(df2a, on='ID', how='left')
.join(df2, on='level_0')
.fillna(123456, downcast='infer')
.drop(['level_0', 'level_1'], axis=1)
)
Result:
print(df_out)
ID ID1 ID2 ID3
0 11 11 5 114
1 22 88 22 18
2 33 99 45 33
3 44 123456 123456 123456
Break down of step:
print(df2a)
level_0 level_1 ID
0 0 ID1 11
1 0 ID2 5
2 0 ID3 114
3 1 ID1 88
4 1 ID2 22
5 1 ID3 18
6 2 ID1 99
7 2 ID2 45
8 2 ID3 33
CodePudding user response:
You should have a look here (https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html), you have many different soutions. For example:
import pandas as pd
df1 = pd.DataFrame(
{
"A": ["A0", "A1", "A2", "A3"],
"B": ["B0", "B1", "B2", "B3"],
"C": ["C0", "C1", "C2", "C3"],
"D": ["D0", "D1", "D2", "D3"],
}
)
df2 = pd.DataFrame(
{
"A": ["A4", "A5", "A6", "A7"],
"B": ["B4", "B5", "B6", "B7"],
"C": ["C4", "C5", "C6", "C7"],
"D": ["D4", "D5", "D6", "D7"],
}
)
df3 = pd.DataFrame(
{
"A": ["A8", "A9", "A10", "A11", "A12"],
"B": ["B8", "B9", "B10", "B11", "B12"],
"C": ["C8", "C9", "C10", "C11", "C12"],
"D": ["D8", "D9", "D10", "D11", "D12"],
}
)
df = pd.concat([df1, df2, df3], axis=1)
Gives you:
A B C D A B C D A B C D
0 A0 B0 C0 D0 A4 B4 C4 D4 A8 B8 C8 D8
1 A1 B1 C1 D1 A5 B5 C5 D5 A9 B9 C9 D9
2 A2 B2 C2 D2 A6 B6 C6 D6 A10 B10 C10 D10
3 A3 B3 C3 D3 A7 B7 C7 D7 A11 B11 C11 D11
4 NaN NaN NaN NaN NaN NaN NaN NaN A12 B12 C12 D12
So, in your case:
df1 = pd.DataFrame(
{
"ID": [11, 22, 33, 44]
}
)
df2 = pd.DataFrame(
{
"ID1": [11, 88, 99],
"ID2": [5, 22, 45],
"ID3": [114, 18, 33]
}
)
df = pd.concat([df1, df2], axis=1)
df.fillna('123456', inplace=True) # to replace NaNs with the values you want
Gives:
ID ID1 ID2 ID3
0 11 11.0 5.0 114.0
1 22 88.0 22.0 18.0
2 33 99.0 45.0 33.0
3 44 123456 123456 123456