I have a csv file which has the configuration information to create the yaml file (final desired result). Firstly, I am trying to convert each row of the csv file to a Dictionary and then I can easily convert Dictionary to yaml file using yaml.dump(Created_Dictionary)
Sample Input file (test.csv):
fieldname|type|allowed
field_A|String|10,20,30
field_B|Integer|
My source code using pandas library:
df = pd.read_csv("test.csv", "|")
df_to_dict = df.to_dict(orient='records')
print(df_to_dict) # print the dictionary
test_yaml = yaml.dump(df_to_dict)
print(test_yaml) # print the yaml file
Output I am getting for dictionary(df_to_dict):
[{'fieldname': 'field_A', 'type': 'String', 'allowed': '10,20,30'}, {'fieldname': 'field_B', 'type': 'Integer', 'allowed': nan}]
Output I am getting for yaml (test_yaml):
- allowed: 10,20,30
fieldname: field_A
type: String
- allowed: .nan
fieldname: field_B
type: Integer
Desired dictionary output (df_to_dict) is:
[
{'EXT_FILE_IND':
{'type': 'String', 'maxlength': '1', 'required': 'TRUE', 'empty': 'TRUE', 'coerce': '', 'allowed': '10,20,30'}
},
{'EXT_0003_SITE_ID':
{'type': 'String', 'maxlength': '4', 'required': 'TRUE', 'empty': 'TRUE', 'coerce': '', 'allowed': ''}
},
{'EXT_1001_CLAIM_NUMBER':
{'type': 'String', 'maxlength': '15', 'required': 'TRUE', 'empty': 'TRUE', 'coerce': '', 'allowed': ''}
}
]
Desired yaml output (test_yaml) is:
field_A:
type: String
allowed: 10,20,30
field_B:
type: Integer
allowed:
I see that the variable, df_to_dict, is a list of dictionaries. Do I have to loop through each list item and then build the dictionary for each row ? I am not understanding the correct approach. Any help is appreciated.
CodePudding user response:
Try:
my_dict = df.set_index("fieldname").to_dict("index")
test_yaml = yaml.dump(my_dict, sort_keys=False)
>>> print(test_yaml)
field_A:
allowed: 10,20,30
type: String
field_B:
allowed: .nan
type: Integer
CodePudding user response:
You want to play around with the index of your pandas DataFrame.
>>> df = pd.read_csv("test.csv", sep="|", index_col=0)
>>> df
type allowed
fieldname
field_A String 10,20,30
field_B Integer NaN
>>> df.to_dict(‘index’) # returns dict like {index -> {column -> value}}
{'field_A': {'type': 'String', 'allowed': '10,20,30'}, 'field_B': {'type': 'Integer', 'allowed': nan}}
>>> print(yaml.dump(df.to_dict(‘index’)))
field_A:
allowed: 10,20,30
type: String
field_B:
allowed: .nan
type: Integer
The .nan
you have to deal with a custom dump or filter.
See
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html