I am reading AVRO file stored on ADLS gen2 using Spark as following:
import dbutils as dbutils
from pyspark.conf import SparkConf
from pyspark.sql import SparkSession
file="abfss://[email protected]/xyz-event-collection/my-events/27/2021/11/01/01/01/01.avro"
key="..........."
appName = "MyEventsReadTest"
master = "local[*]"
sparkConf=SparkConf() \
.setAppName(appName) \
.setMaster(master) \
.set("fs.azure.account.key.dechitraguptdatalake.dfs.core.windows.net", key)
spark=SparkSession.builder.config(conf=sparkConf).getOrCreate()
df=spark.read.format("avro").load(file)
df.show()
I submit this readEventsFromADLS2.py
file as following:
spark-submit --packages org.apache.spark:spark-avro_2.12:2.4.8 --jars hadoop-azure-3.3.1.jar ./readEventsFromADLS2.py
However, I get only shortened output as a result.
21/11/15 13:21:03 INFO CodeGenerator: Code generated in 13.582867 ms
-------------- -------- -------------------- -------------------- ---------- --------------------
|SequenceNumber| Offset| EnqueuedTimeUtc| SystemProperties|Properties| Body|
-------------- -------- -------------------- -------------------- ---------- --------------------
| 31411|21976208|11/10/2021 12:11:...|{x-opt-enqueued-t...| {}|[7B 22 70 61 79 6...|
| 31412|21977032|11/10/2021 12:11:...|{x-opt-enqueued-t...| {}|[7B 22 70 61 79 6...|
| 31413|21977736|11/10/2021 12:12:...|{x-opt-enqueued-t...| {}|[7B 22 70 61 79 6...|
| 31414|21977800|11/10/2021 12:12:...|{x-opt-enqueued-t...| {}|[7B 22 70 61 79 6...|
| 31415|21978336|11/10/2021 12:12:...|{x-opt-enqueued-t...| {}|[7B 22 70 61 79 6...|
| 31416|21978872|11/10/2021 12:12:...|{x-opt-enqueued-t...| {}|[7B 22 70 61 79 6...|
| 31417|21979632|11/10/2021 12:12:...|{x-opt-enqueued-t...| {}|[7B 22 70 61 79 6...|
-------------- -------- -------------------- -------------------- ---------- --------------------
21/11/15 13:21:03 INFO SparkContext: Invoking stop() from shutdown hook
Questions:
- How do I get to print fully expanded column in the above output?
- How do I see the
Body
section (last column in the above output) in the text format? Body is actually a JSON, but coming as byte array here.
When I changed the df.show() to df.show(10,False)
, I still get binary byte array representation for the Body
field:
|31411 |21976208|11/10/2021 12:11:46 PM|{x-opt-enqueued-time -> {1636546306366, null, null, null}}|{} |[7B 22 70 61 79 6C 6F 61 64 22 3A....]
CodePudding user response:
To fully display all of the column you can use:
df.select("body").show(false)
If the data really is JSON and you want it read is JSON, consider specifying the schema instead of letting Spark interpret it for you.