I have a data frame shown below with pid
and event_date
being the indices after applying groupby
. I want to apply groupby
again this time only to pid
, and applies to two conditions:
- A person (pid=person) has two or more True labels;
- The first True instance of this person occurred when he/she was under 45 years old;
If the two above conditions satisfy then assign this person/pid to True in the groupby-ed dataframe.
age label
pid event_date
00000001 2000-08-28 76.334247 False
2000-10-17 76.471233 False
2000-10-31 76.509589 True
2000-11-02 76.512329 True
... ... ... ...
00000005 2014-08-15 42.769863 False
2015-04-04 43.476712 False
2015-11-06 44.057534 True
2017-03-06 45.386301 True
I have come only so far to implement the first condition:
df = (df.groupby(['pid']).apply(lambda x: sum(x['label'])>1).to_frame('label'))
The second one is tricky for me. How do I condition on the first occurrence of some column value? Any advice is very much welcomed! Many thanks!
UPDATE with an example dataframe:
a = pd.DataFrame(columns=['pid', 'event_date', 'age', 'label'])
a['pid'] = [1, 1, 1, 1, 5, 5, 5, 5]
a['event_date'] = ['2000-08-28', '2000-08-28', '2000-08-28', '2000-08-28',\
'2000-08-28', '2000-08-28', '2000-08-28', '2000-08-28']
a['event_date'] = pd.to_datetime(a.event_date)
a['age'] = [76.334247, 76.471233, 76.509589, 76.512329, 42.769863, 43.476712, 44.057534, 45.386301]
a['label'] = [False, False, True, True, False, False, True, True]
a = (a.groupby(['pid', 'event_date', 'age']).apply(lambda x: x['label'].any()).to_frame('label'))
a.reset_index(level=['age'], inplace=True)
Now if I apply (a.groupby(['pid']).apply(lambda x: sum(x['label'])>1).to_frame('label'))
I would get
label
pid
1 True
5 True
Which only satisfies the first condition (well because I skipped the second one). Adding the second condition should only label pid=5
True since only this person/pid was under 45 when the first label=True
occurred.
CodePudding user response:
After half a (fun) hour, I came up with this:
condition = a.reset_index().groupby('pid')['label'].sum().ge(2) & a.reset_index().groupby('pid').apply(lambda x: x['age'][x['label'].idxmax()] < 45)
Output:
>>> condition
pid
1 False
5 True
dtype: bool
It could be shorten a little bit (removing the two .reset_index()
calls) if the index was normal, not a MultiIndex of pid
event_date
. If you can't avoid that from the start and you don't mind changing a
:
a = a.reset_index()
condition = a.groupby('pid')['label'].sum().ge(2) & a.groupby('pid').apply(lambda x: x['age'][x['label'].idxmax()] < 45)
Expanded:
condition = (
a.groupby('pid') # Group by pid
['label'] # Get the label column for each group
.sum() # Compute the sum of the True values
.ge(2) # Are there two or more?
& # Boolean mask. The previous and the next bits of code are the two conditions, and they return a series, where the index is each unique pid, and the value is whether the condition is met for all the rows in that pid
a.groupby('pid') # Group by pid
.apply( # Call a function for each group, passing the group (a dataframe) to the function as its first parameter
lambda x: # Function start
x['age'][ # Get item from the age column at the specified index
x['label'].idxmax() # Get the index of the highest value of the label column (since they're only boolean values, the highest will be the first True value)
] < 45 # Check if it's less than 45
)
)