I have a dataframe like this:
dat<- data.frame (
'Ones'=c(0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0),
'Thats'=c(0,5,3,6,8,4,5,6,8,3,1,3,4,5,6,7,4,3,4,5))
I have to create a function (gap1) that detects each 1 in Ones and than sums n-1, n and n 1 in Thats, with n being in the same row as 1.
For example in this dataset I have two 1.
dat<- data.frame (
'Ones'=c(0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0),
'Thats'=c(0,5,3,6,8,4,5,6,8,3,1,3,4,5,6,7,4,3,4,5))
dat
This should be the output:
Ones Thats gap1
1 4 17 #(8 4 5)
1 1 7 #(3 1 3)
I would like to extend this gap at will, for example:
Ones Thats gap1 gap2 gap3 ...
1 4 17 29 #(6 8 4 5 6)
1 1 7 9 #(8 3 1 3 4)
There is another problem I have to consider: Suppose we have this data frame:
dat<- data.frame (
'Ones'=c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0),
'Thats'=c(0,5,3,6,8,4,5,6,8,3,1,NA,4,5,6,7,4,3,4,5))
In case there is a 1 at the beginning (or at the end), or if there is an NA, the function should use available data.
In this case, for example:
Ones Thats gap1 gap2
1 0 5 (0 5) 8 #(0 5 3)
1 4 17 (8 4 5) 29 #(6 8 4 5 6)
1 1 4 (3 1 NA) 16 #(8 3 1 NA 4)
Do you have any advice?
CodePudding user response:
Using tidyverse
/ collapse
For arbitrary number of lead and lags the collapse
package offers a nice function flag
, which has further arguments to specify columns (cols
), or grouping variables g
.
library(dplyr)
f <- function(df, n){
df %>%
collapse::flag(-n:n) %>%
transmute(Ones, Thats, gap = rowSums(., na.rm = T) - 1) %>%
filter(Ones == 1)
}
x <- data.frame (
'Ones'=c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0),
'Thats'=c(0,5,3,6,8,4,5,6,8,3,1,NA,4,5,6,7,4,3,4,5))
# we can now specify how many lags to count:
f(x, 1)
Ones Thats gap
1 1 0 5
2 1 4 17
3 1 1 4
f(x, 2)
Ones Thats gap
1 1 0 8
2 1 4 29
3 1 1 16
Or if you want to specify the number of gaps to compute, we can simplify the function to
f <- function(df, n){
df %>%
collapse::flag(-n:n) %>%
rowSums(na.rm = T) - 1
}
x %>%
mutate(gap1 = f(., 1),
gap2 = f(., 2)) %>%
filter(Ones == 1)
Ones Thats gap1 gap2
1 1 0 5 8
2 1 4 17 29
3 1 1 4 16
Base R If you like terse functions:
f <- Vectorize(\(df, n) rowSums(collapse::flag(df, -n:n), na.rm = T) - 1, "n")
x[paste0("gap", 1:2)] <- f(x, 1:2) ; subset(x, Ones == 1)
Ones Thats gap1 gap2
1 1 0 5 8
6 1 4 17 29
11 1 1 4 16
CodePudding user response:
With BaseR
,
myfun <- function(data,gap=1) {
points <- which(data["Ones"]==1)
sapply(points, function(x) {
bottom <- ifelse(x-gap<=0,1,x -gap)
top <- ifelse(x gap > nrow(data),nrow(data),x gap)
sum(data[bottom:top,"Thats"], na.rm=T)
})
}
#> myfun(dat,1)
#[1] 5 17 4
#> myfun(dat,2)
#[1] 8 29 16
CodePudding user response:
Another base R solution
f <- function(dat, width = 1)
{
dat$gaps <- sapply(seq(nrow(dat)), function(x) {
if(dat$Ones[x] == 0) return(0)
i <- x seq(2 * width 1) - (width 1)
i <- i[i > 0]
i <- i[i < nrow(dat)]
sum(dat$Thats[i])
})
dat[dat$Ones == 1,]
}
f(dat, 1)
#> Ones Thats gaps
#> 6 1 4 17
#> 11 1 1 7
f(dat, 2)
#> Ones Thats gaps
#> 6 1 4 29
#> 11 1 1 19