I have a dataset where, whenever the date value in the 'Update' column is updated, the other columns will be updated as well. Logic is:
Date1 is 3 months from Date2
Date2 is 1 month from Date3
and Update is 1 month from Date3
The only data that is changing is the dates, which are essentially getting shifted based upon the user input.
Data
Date1 Date2 Date3 Update
1/1/2021 4/1/2021 5/1/2021 6/1/2021
5 2 1 1
Desired
Input prompt will ask user which date value they wish to input. User inputs the date '8/1/2021', which updates the remaining column date values.
Date1 Date2 Date3 Update
3/1/2021 6/1/2021 7/1/2021 8/1/2021
5 2 1 1
Doing
I believe I can use a combination of a function as well as user prompt to approach this problem.
#take input
datevalue = input("Enter date value: ")
print(datevalue)
#use input variable in function or script to create date update
s = df['Update'].str.replace(r'(\S ) (\S )', r'\2\1')
df['Update'] = (pd.PeriodIndex(s, freq='D') 3).strftime('D%q %Y')
I am looking for some starting point suggestion or a good foundation/documentation on how to best approach this problem. I am still researching. Any suggestion is appreciated.
CodePudding user response:
Your data format is a bit messy, but this should work for you:
datevalue = pd.to_datetime(input("Enter date value: "))
df = df.T
df[1] = df[1].astype(int)
df.loc['Update', 1] = 0
df[0] = df[1].apply(lambda x: datevalue - pd.DateOffset(months=x))
df = df.T
Output:
>>> df
Date1 Date2 Date3 Update
0 2021-03-01 00:00:00 2021-06-01 00:00:00 2021-07-01 00:00:00 2021-08-01 00:00:00
1 5 2 1 0