I am stuck on a multidimensional key value error. I have a datframe that looks like this:
year RMSE index cyear Corr_to_CY
0 2000 0.279795 5 1997 0.997975
1 2011 0.299011 2 1994 0.997792
2 2003 0.368341 1 1993 0.977143
3 2013 0.377902 23 2015 0.824441
4 1999 0.41495 10 2002 0.804633
5 1997 0.435813 8 2000 0.752724
6 2018 0.491003 24 2016 0.703359
7 2002 0.505771 3 1995 0.684926
8 2009 0.529308 17 2009 0.580481
9 2015 0.584146 27 2019 0.556555
10 2004 0.620946 26 2018 0.500790
11 2016 0.659388 22 2014 0.443543
12 1993 0.700942 19 2011 0.431615
13 2006 0.748086 11 2003 0.375111
14 2007 0.766675 21 2013 0.323143
15 2020 0.827913 12 2004 0.149202
16 2014 0.884109 7 1999 0.002438
17 2012 0.900184 0 1992 -0.351615
18 1995 0.919482 28 2020 -0.448915
19 1992 0.930512 20 2012 -0.563762
20 2001 0.967834 18 2010 -0.613170
21 2019 1.00497 9 2001 -0.677590
22 2005 1.00885 13 2005 -0.695690
23 2010 1.159125 14 2006 -0.843122
24 2017 1.173262 15 2007 -0.931034
25 1994 1.179737 6 1998 -0.939697
26 2008 1.212915 25 2017 -0.981626
27 1996 1.308853 16 2008 -0.985893
28 1998 1.396771 4 1996 -0.999990
I have selected the conditions for column values of 'Corr_to_CY' >= 0.70 and to return values of 'cyear' column into a new df called 'cyears'. I need to use this as an index to find the year and RMSE value where the 'year' column is in cyears df. This is my best attempt and I get the value error: cannot index with multidimensional key. Do I need to change the index df "cyears" to something else - series, list, etc for this to work? thank you and here is my code that produces the error:
cyears = comp.loc[comp['Corr_to_CY']>= 0.7,'cyear']
cyears = cyears.to_frame()
result = comp.loc[comp['year'] == cyears,'RMSE']
ValueError: Cannot index with multidimensional key
CodePudding user response:
You can use isin
method:
import pandas as pd
# Sample creation
import io
comp = pd.read_csv(io.StringIO('year,RMSE,index,cyear,Corr_to_CY\n2000,0.279795,5,1997,0.997975\n2011,0.299011,2,1994,0.997792\n2003,0.368341,1,1993,0.977143\n2013,0.377902,23,2015,0.824441\n1999,0.41495,10,2002,0.804633\n1997,0.435813,8,2000,0.752724\n2018,0.491003,24,2016,0.703359\n2002,0.505771,3,1995,0.684926\n2009,0.529308,17,2009,0.580481\n2015,0.584146,27,2019,0.556555\n2004,0.620946,26,2018,0.500790\n2016,0.659388,22,2014,0.443543\n1993,0.700942,19,2011,0.431615\n2006,0.748086,11,2003,0.375111\n2007,0.766675,21,2013,0.323143\n2020,0.827913,12,2004,0.149202\n2014,0.884109,7,1999,0.002438\n2012,0.900184,0,1992,-0.351615\n1995,0.919482,28,2020,-0.448915\n1992,0.930512,20,2012,-0.563762\n2001,0.967834,18,2010,-0.613170\n2019,1.00497,9,2001,-0.677590\n2005,1.00885,13,2005,-0.695690\n2010,1.159125,14,2006,-0.843122\n2017,1.173262,15,2007,-0.931034\n1994,1.179737,6,1998,-0.939697\n2008,1.212915,25,2017,-0.981626\n1996,1.308853,16,2008,-0.985893\n1998,1.396771,4,1996,-0.999990\n'))
# Operations
cyears = comp.loc[comp['Corr_to_CY']>= 0.7,'cyear']
result = comp.loc[comp['year'].isin(cyears),'RMSE']
If you want to keep cyears
as pandas DataFrame instead of Series, try the following:
# Operations
cyears = comp.loc[comp['Corr_to_CY']>= 0.7, ['cyear']]
result = comp.loc[comp['year'].isin(cyears.cyear),'RMSE']