(Py)Spark to_date convert 31-DEC-98 to 2098-12-31. Is there a way to make it 1998-12-31?
The document does not have an option to select 1000 or 2000.
to_date(date_str[, fmt]) - Parses the date_str expression with the fmt expression to a date. Returns null with invalid input. By default, it follows casting rules to a date if the fmt is omitted.
grade_type = spark.read\
.option("header", "true")\
.option("nullValue", "")\
.option("inferSchema", "true")\
.csv("student/GRADE_TYPE_DATA_TABLE.csv")
grade_type.show(3)
-----
--------------- ----------- ---------- ------------ ----------- -------------
|GRADE_TYPE_CODE|DESCRIPTION|CREATED_BY|CREATED_DATE|MODIFIED_BY|MODIFIED_DATE|
--------------- ----------- ---------- ------------ ----------- -------------
| FI| Final| MCAFFREY| 31-DEC-98| MCAFFREY| 31-DEC-98|
| HM| Homework| MCAFFREY| 31-DEC-98| MCAFFREY| 31-DEC-98|
| MT| Midterm| MCAFFREY| 31-DEC-98| MCAFFREY| 31-DEC-98|
--------------- ----------- ---------- ------------ ----------- -------------
grade_type = spark.read\
.option("header", "true")\
.option("nullValue", "")\
.option("inferSchema", "true")\
.csv("student/GRADE_TYPE_DATA_TABLE.csv")\
.withColumn("CREATED_DATE", to_date(col('CREATED_DATE'), "dd-MMM-yy"))\
.withColumn("MODIFIED_DATE", to_date(col('MODIFIED_DATE'), "dd-MMM-yy"))
grade_type.show(3)
-----
--------------- ----------- ---------- ------------ ----------- -------------
|GRADE_TYPE_CODE|DESCRIPTION|CREATED_BY|CREATED_DATE|MODIFIED_BY|MODIFIED_DATE|
--------------- ----------- ---------- ------------ ----------- -------------
| FI| Final| MCAFFREY| 2098-12-31| MCAFFREY| 2098-12-31|
| HM| Homework| MCAFFREY| 2098-12-31| MCAFFREY| 2098-12-31|
| MT| Midterm| MCAFFREY| 2098-12-31| MCAFFREY| 2098-12-31|
--------------- ----------- ---------- ------------ ----------- -------------
CodePudding user response:
Yes, but I think you have to do some ugly string manipulation:
df.withColumn("MODIFIED_DATE",
to_date(concat(col("MODIFIED_DATE").substr(0, 7),
lit("19"),
col("MODIFIED_DATE").substr(8, 2)
), "dd-MMM-yyyy"))
I get this (note: using Scala, but the API should be the same as PySpark):
scala> val df = Seq(("31-DEC-98")).toDF("MODIFIED_DATE")
scala> df.withColumn("new_date", to_date(concat(col("MODIFIED_DATE").substr(0, 7), lit("19"), col("MODIFIED_DATE").substr(8, 2)), "dd-MMM-yyyy")).show
------------- ----------
|MODIFIED_DATE| new_date|
------------- ----------
| 31-DEC-98|1998-12-31|
------------- ----------
CodePudding user response:
On Spark 3.0, a new dates parser was introduced, with a changed behavior for dealing with 2 digits year.
You could find a reference for the change under Upgrading from Spark SQL 2.4 to 3.0
spark.conf.set('spark.sql.legacy.timeParserPolicy', 'LEGACY')
will give you the original behavior with the required results
from pyspark.sql import functions as F
spark.conf.set('spark.sql.legacy.timeParserPolicy', 'LEGACY')
(spark.createDataFrame([('31-DEC-98',)], 'my_date string')
.select(F.to_date('my_date','dd-MMM-yy')
.alias('my_new_date')).show()
)
-----------
|my_new_date|
-----------
| 1998-12-31|
-----------