Home > OS >  Running analysis on for loop x times
Running analysis on for loop x times

Time:02-23

I have the following code that selects 4 rows of iris 1000x, and takes the mean of each 4 row sample:

library(dplyr)

iris<- iris

storage<- list()


counter<- 0
for (i in 1:1000) {
  # sample 3 randomly selected transects 100 time
  tempsample<- iris[sample(1:nrow(iris), 4, replace=F),]

  storage[[i]]=tempsample

  
  counter<- counter 1
  print(counter)
}

# Unpack results into dataframe 
results<- do.call(rbind, storage)
View(results)

results_2<- as.data.frame(results)
results_2<- results_2 %>% mutate(Aggregate = rep(seq(1,ceiling(nrow(results_2)/4)),each = 4))
# View(results_2)


final_results<- aggregate(results_2[,1:4], list(results_2$Aggregate), mean)
# View(final_results)

I want to calculate the bias of each column in relation to their true population parameter. For example using SimDesign's bias():

library(SimDesign)
(bias(final_results[,2:5], parameter=c(5,3,2,1), type='relative'))*100

In this code, the values of parameter are hypothetical true pop. values of each column in the dataframe. I want to do this process 100x to get a distribution of bias estimates for each variable in the dataframe. However, I'm not sure how to fit all of this into a for loop (what I think would be the way to go) so the final output is a dataframe with 100 rows of bias measurements for each iris variable.

Any help with this would be greatly appreciated.

CodePudding user response:

Here is one way to do that. I've made some minor changes to your code, and wrapped it in a function. Then, use lapply over a sequence say 1:10 or 1:100, each time running your function, and feeding the result to your bias function from the SimDesign package. Then row bind the resulting list

library(dplyr)

get_samples <- function(df, size=4, n=1000) {

  storage<- list()
  counter<- 0
  
  for (i in 1:1000) {
    tempsample<- df[sample(1:nrow(df), size, replace=F),]
    storage[[i]]=tempsample
    counter<- counter 1
  }
  
  results<- do.call(rbind, storage)
  results_2<- as.data.frame(results)
  results_2<- results_2 %>% mutate(Aggregate = rep(seq(1,ceiling(nrow(results_2)/size)),each = size))
  final_results<- aggregate(results_2[,1:size], list(results_2$Aggregate), mean)
  return(final_results)
}


iris=iris

replicates = lapply(1:10, function(x) {
  result = get_samples(iris)
  (bias(result[,2:5], parameter=c(5,3,2,1), type='relative'))*100
})

replicates = do.call(rbind, replicates)

Output:

      Sepal.Length Sepal.Width Petal.Length Petal.Width
 [1,]     41.50617    3.292500     86.77408    8.859333
 [2,]     43.26058    2.763500     90.20758   10.825917
 [3,]     43.46642    3.551750     90.11767   10.576250
 [4,]     41.94683    2.970833     86.89625    8.817000
 [5,]     42.08733    3.380917     86.78642    8.996667
 [6,]     42.13050    2.942250     88.02983    9.707500
 [7,]     43.07383    2.775500     89.04583   10.102083
 [8,]     44.10192    2.895167     91.27208   11.188500
 [9,]     41.29408    2.314750     87.59208    9.244333
[10,]     42.77450    2.781583     90.37342   10.789500
  • Related