Objective
I wish to add subheader and subtotal/margin rows within a table. Ultimately, I am looking for a structure shown below, which I will export to Excel with openxlsx
and writeData
.
2019 | 2020 | 2021 | |
---|---|---|---|
A | |||
A1 | 1001 | 1157 | 911 |
A2 | 1005 | 803 | 1110 |
A3 | 1125 | 897 | 1190 |
Total A | 3131 | 2857 | 3211 |
B | |||
B1 | 806 | 982 | 1098 |
B2 | 1106 | 945 | 1080 |
B3 | 1057 | 1123 | 867 |
Total B | 2969 | 3050 | 3045 |
C | |||
C1 | 847 | 1087 | 1140 |
C2 | 1146 | 966 | 1176 |
C3 | 1071 | 915 | 892 |
Total C | 3064 | 2968 | 3208 |
Total All | 9164 | 8875 | 9464 |
I suspect the subheaders and subtotals are completely different questions, but I am asking both here in case there is a common method related to each.
Reproducible Code So Far
Create the Sample Data (long format):
d <- data.frame(
year = rep(c(2019, 2020, 2021), times = 9),
sector = rep(c("A","B","C"),each = 9),
subsector = paste0(rep(c("A","B","C"),each = 9), rep(c("1","2","3"), each = 3)),
value = sample(800:1200, 27, replace = FALSE)
)
Output:
head(d)
#> year sector subsector value
#> 1 2019 A A1 1001
#> 2 2020 A A1 1157
#> 3 2021 A A1 911
#> 4 2019 A A2 1005
#> 5 2020 A A2 803
#> 6 2021 A A2 1110
Format wide and add a margin (total) row:
library(janitor)
#[snip]warnings[/snip]
library(tidyverse)
#[snip]warnings[/snip]
d %>%
group_by(year, sector, subsector) %>%
summarise(sales = sum(value, na.rm = TRUE)) %>%
pivot_wider(names_from = year, values_from = sales) %>%
janitor::adorn_totals(where = "row")
Output:
#> `summarise()` has grouped output by 'year', 'sector'. You can override using the `.groups` argument.
#> sector subsector 2019 2020 2021
#> A A1 1001 1157 911
#> A A2 1005 803 1110
#> A A3 1125 897 1190
#> B B1 806 982 1098
#> B B2 1106 945 1080
#> B B3 1057 1123 867
#> C C1 847 1087 1140
#> C C2 1146 966 1176
#> C C3 1071 915 892
#> Total - 9164 8875 9464
An option is also to split the column with expss
library(expss)
library(openxlsx)
out <- d %>%
group_by(year, sector, subsector) %>%
summarise(sales = sum(value, na.rm = TRUE), .groups = 'drop') %>%
pivot_wider(names_from = year, values_from = sales) %>%
group_by(sector) %>%
group_modify(~ .x %>% adorn_totals(where = "row")) %>%
ungroup %>%
split_columns(columns = 1)
wb <- createWorkbook()
sh <- addWorksheet(wb, "Tables")
xl_write(out, wb, sh)
saveWorkbook(wb, file.path(getwd(), "Documents/table1.xlsx"), overwrite = TRUE)
-output