Is there any way to remove from first DataFrame all rows which can be found in second DataFrame and add rows which are exclusive only in second DataFrame (= XOR)? Here's a twist: the first DataFrame has one column that shall be ignored during comparison.
import pandas as pd
df1 = pd.DataFrame({'col1': [1,2,3],
'col2': [4,5,6],
'spec': ['A','B','C']})
df2 = pd.DataFrame({'col1': [1,9],
'col2': [4,9]})
result = pd.DataFrame({'col1': [2,3,9],
'col2': [5,6,9],
'spec': ['B','C','df2']})
df1 = df1.astype(str)
df2 = df1.astype(str)
This is analogical to UNION (not UNION ALL) operation.
Combine
col1 col2 spec
0 1 4 A
1 2 5 B
2 3 6 C
and
col1 col2
0 1 4
1 9 9
to
col1 col2 spec
1 2 5 B
2 3 6 C
1 9 9 df2
CodePudding user response:
You could concatenate and drop duplicates:
out = (pd.concat((df1, df2.assign(spec='df2')))
.drop_duplicates(subset=['col1','col2'], keep=False))
or filter out the common rows and concatenate:
out = pd.concat((df1[~df1[['col1','col2']].isin(df2[['col1','col2']]).all(axis=1)],
df2[~df2.isin(df1[['col1','col2']]).all(axis=1)].assign(spec='df2')))
Output:
col1 col2 spec
1 2 5 B
2 3 6 C
1 9 9 df2