I've got a dataframe with a column names birthdates, they are all strings, most are saved as %d.%m.%Y, some are saved as %d.%m.%y.
How can I make this work?
df["birthdates_clean"] = pd.to_datetime(df["birthdates"], format = "%d.%m.%Y")
If this can't work, do I need to filter the rows? How would I do it?
Thanks for taking time to answer!
CodePudding user response:
I am not sure what is the expected output, but you can let to_datetime
parse automatically the dates:
df = pd.DataFrame({"birthdates": ['01.01.2000', '01.02.00', '02.03.99',
'02.03.22', '01.01.71', '01.01.72']})
# as datetime
df["birthdates_clean"] = pd.to_datetime(df["birthdates"], dayfirst=True)
# as custom string
df["birthdates_clean2"] = (pd.to_datetime(df["birthdates"], dayfirst=True)
.dt.strftime('%d.%m.%Y')
)
NB. the shift point is currently at 71/72. 71 gets evaluated as 2071 and 72 as 1972
output:
birthdates birthdates_clean birthdates_clean2
0 01.01.2000 2000-01-01 01.01.2000
1 01.02.00 2000-02-01 01.02.2000
2 02.03.99 1999-03-02 02.03.1999
3 02.03.22 2022-03-02 02.03.2022
4 01.01.71 2071-01-01 01.01.2071
5 01.01.72 1972-01-01 01.01.1972