How can I add the values and keys of multiple dictionaries based on having the same isolate name?
Example dataframe:
Isolate | dictionary |
---|---|
VM20030364 | {'L': 200, 'V': 500, 'T': 300, 'A': 400, 'S': 1} |
VM20030364 | {'L': 200, 'V': 600, 'T': 300, 'A': 450} |
VM20030364 | {'L': 100, 'V': 400, 'T': 300, 'A': 400, 'S': 1} |
UNKNOWN-UW-1773 | {'L': 500, 'V': 360, 'T': 340, 'A': 300, 'S': 1} |
UNKNOWN-UW-1773 | {'L': 500, 'V': 340, 'T': 340, 'A': 300, 'S': 2} |
UNKNOWN-UW-1773 | {'L': 500, 'V': 200, 'T': 350, 'A': 310} |
Output dataframe:
Isolate | dictionary |
---|---|
VM20030364 | {'L': 500, 'V': 1500, 'T': 900, 'A': 1250, 'S': 2} |
UNKNOWN-UW-1773 | {'L': 1500, 'V': 800, 'T': 1030, 'A': 910, 'S': 3} |
CodePudding user response:
Let us map the dictionary column using Counter
, then group
the dataframe by Isolate
and aggregate using sum
from collections import Counter
df['dictionary'].map(Counter).groupby(df['Isolate']).sum().reset_index()
Isolate dictionary
0 UNKNOWN-UW-1773 {'L': 1500, 'V': 900, 'T': 1030, 'A': 910, 'S': 3}
1 VM20030364 {'L': 500, 'V': 1500, 'T': 900, 'A': 1250, 'S': 2}