Home > OS >  ValueError: Found unknown categories [nan] in column 2 during fit
ValueError: Found unknown categories [nan] in column 2 during fit

Time:04-12

import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split,cross_val_score
from sklearn.tree import DecisionTreeClassifier

path = r"C:\Users\thund\Downloads\Boat.csv"
data = pd.read_csv(path)  # pip install xlrd

print(data.shape)

print(data.columns)

print(data.isnull().sum())
print (data.dropna(axis=0))  #dropping rows that have missing values

print (data['Class'].value_counts())

print(data['Class'].value_counts().plot(kind = 'bar'))
#plt.show()

data['safety'].value_counts().plot(kind = 'bar')
#plt.show()


import seaborn as sns
sns.countplot(data['demand'], hue = data['Class'])
#plt.show()

X = data.drop(['Class'], axis = 1)
y = data['Class']

from sklearn.preprocessing import OrdinalEncoder
demand_category = ['low', 'med', 'high', 'vhigh']
maint_category = ['low', 'med', 'high', 'vhigh']
seats_category = ['2', '3', '4', '5more']
passenger_category = ['2', '4', 'more']
storage_category = ['Nostorage', 'small', 'med']
safety_category = ['poor', 'good', 'vgood']
all_categories = [demand_category, maint_category,seats_category,passenger_category,storage_category,safety_category]


oe = OrdinalEncoder(categories= all_categories)
X = oe.fit_transform( data[['demand','maint', 'seats', 'passenger', 'storage', 'safety']])

Dataset: https://drive.google.com/file/d/1O0sYZGJep4JkrSgGeJc5e_Nlao2bmegV/view?usp=sharing

For the mentioned code I keep getting this 'ValueError: Found unknown categories [nan] in column 2 during fit'. I have tried dropping all missing values. I tried searching for a fix and I found someone's suggestion on using handle_unknown="ignore", but I don't think it works for ordinal encoding. I am fairly new to python so would deeply appreciate it if someone could give me an in-depth analysis of why this is happening and how can I work to fix it.

Ps: This is for pre-processing the data.

CodePudding user response:

To explain the error, You have dropped the "NaN" and just printed the DataFrame with dropped data.

According to your dataset or the ERROR you have a value "NaN" in column "seats".

When you print out the data['seats'].unique(), You get something like this:

['2' '3' '4' '5more' nan]

There are two solutions:

  1. Using inplace :

    `data.dropna(inplace=True)`
    

    What this does is , it updates the original DataFrame to its updated value

  2. Manually assigning:

    `data = data.dropna()`
    

    This exactly does what 'inplace' does but its not that effecient but more understandable.

    Hope this answers your question.

  • Related