I am looking for a tidyverse solution of populating a column based on some condition by iterating over a vector. I would like a tidy solution, as my data is large and nested, unlike the following minimal example.
Column prev
represents previous state of a system, new
represents the new state. prev
and new
are always in sequence, but some of them may loop, like in the example below.
0
and 100
values are start and finish states, the states represented here as letters are the important ones.
For certain combination of prev
and new
(i.e. satisfying both prev_condition
and new_condition
), I need to iterate over a larger vector vec
(it has more elements than possible combinations of state) and place the values in order in column to_do
I would like to add that combinations of prev
and new
do not need to be unique, this is why I added column change
to indicate every state change that took place.
Here is a minimal example and a solution in base R. I am really hoping for an elegant tidyverse solution. Thank you.
EDIT: I have received two wonderful answers, but my mistake was to provide an example vector vec
containing ascending numeric values. I have edited my question with a more apropiate vec
.
# Minimal reproducible data
df <- data.frame(prev = c("0", rep(letters[1:3], 2), rep(letters[4:10], 3)),
new = c(rep(letters[1:3], 2), rep(letters[4:10], 3), "100"),
change = 1:28,
to_do = rep(NA, 28))
# Vector for iteration
set.seed(101)
vec <- sample(LETTERS, size = 30, replace = TRUE)
vec
#> [1] "I" "Y" "N" "W" "Q" "Z" "V" "C" "C" "I" "C" "C" "B" "T" "U" "Q" "N" "L" "A"
#> [20] "M" "F" "X" "Z" "P" "U" "J" "Z" "K" "U" "Z"
# Conditions
prev_condition <- c(letters[4:6]) # prev state must be any of: "d" "e" "f"
new_condition <- c(letters[5:7]) # new state must be any of: "e" "f" "g"
# base R solution
n_row <- length(df[df$prev %in% prev_condition & df$new %in% new_condition, "to_do"])
df[df$prev %in% prev_condition & df$new %in% new_condition, "to_do"] <- vec[1:n_row]
df
#> prev new change to_do
#> 1 0 a 1 <NA>
#> 2 a b 2 <NA>
#> 3 b c 3 <NA>
#> 4 c a 4 <NA>
#> 5 a b 5 <NA>
#> 6 b c 6 <NA>
#> 7 c d 7 <NA>
#> 8 d e 8 I
#> 9 e f 9 Y
#> 10 f g 10 N
#> 11 g h 11 <NA>
#> 12 h i 12 <NA>
#> 13 i j 13 <NA>
#> 14 j d 14 <NA>
#> 15 d e 15 W
#> 16 e f 16 Q
#> 17 f g 17 Z
#> 18 g h 18 <NA>
#> 19 h i 19 <NA>
#> 20 i j 20 <NA>
#> 21 j d 21 <NA>
#> 22 d e 22 V
#> 23 e f 23 C
#> 24 f g 24 C
#> 25 g h 25 <NA>
#> 26 h i 26 <NA>
#> 27 i j 27 <NA>
#> 28 j 100 28 <NA>
Created on 2022-05-09 by the reprex package (v2.0.1)
CodePudding user response:
Using dplyr
, we can create the column with replace
- create a NA
vector and replace
with the sequence of count (sum
of logical vector) where that condition is TRUE
library(dplyr)
df %>%
mutate(to_do = replace(rep(NA_real_, n()),
prev %in% prev_condition & new %in% new_condition,
seq_len(sum(prev %in% prev_condition & new %in% new_condition))))
-output
prev new change to_do
1 0 a 1 NA
2 a b 2 NA
3 b c 3 NA
4 c a 4 NA
5 a b 5 NA
6 b c 6 NA
7 c d 7 NA
8 d e 8 1
9 e f 9 2
10 f g 10 3
11 g h 11 NA
12 h i 12 NA
13 i j 13 NA
14 j d 14 NA
15 d e 15 4
16 e f 16 5
17 f g 17 6
18 g h 18 NA
19 h i 19 NA
20 i j 20 NA
21 j d 21 NA
22 d e 22 7
23 e f 23 8
24 f g 24 9
25 g h 25 NA
26 h i 26 NA
27 i j 27 NA
28 j 100 28 NA
CodePudding user response:
Will this work for you:
library(dplyr)
df %>%
mutate(to_do = ifelse(new %in% new_condition &
prev %in% prev_condition, rank(to_do), to_do),
to_do = replace(to_do, !is.na(to_do),
seq_len(sum(!is.na(to_do)))))
prev new change to_do
1 0 a 1 NA
2 a b 2 NA
3 b c 3 NA
4 c a 4 NA
5 a b 5 NA
6 b c 6 NA
7 c d 7 NA
8 d e 8 1
9 e f 9 2
10 f g 10 3
11 g h 11 NA
12 h i 12 NA
13 i j 13 NA
14 j d 14 NA
15 d e 15 4
16 e f 16 5
17 f g 17 6
18 g h 18 NA
19 h i 19 NA
20 i j 20 NA
21 j d 21 NA
22 d e 22 7
23 e f 23 8
24 f g 24 9
25 g h 25 NA
26 h i 26 NA
27 i j 27 NA
28 j 100 28 NA