I'm attempting to compare two data frames. Item
and Summary
variables correspond to various dates and quantities. I'd like to transpose the dates into one column of data along with the associated quantities. I'd then like to compare the two data frames and see what changed from PreviousData
to CurrentData
.
Previous Data:
PreviousData = { 'Item' : ['abc','def','ghi','jkl','mno','pqr','stu','vwx','yza','uaza','fupa'],
'Summary' : ['party','weekend','food','school','tv','photo','camera','python','r','rstudio','spyder'],
'2022-01-01' : [1, np.nan, np.nan, 1.0, np.nan, 1.0, np.nan, np.nan, np.nan,np.nan,2],
'2022-02-01' : [1,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan],
'2022-03-01' : [np.nan,np.nan,np.nan,1,np.nan,np.nan,1,np.nan,np.nan,np.nan,np.nan],
'2022-04-01' : [np.nan,np.nan,3,np.nan,np.nan,3,np.nan,np.nan,np.nan,np.nan,np.nan],
'2022-05-01' : [np.nan,np.nan,np.nan,3,np.nan,np.nan,2,np.nan,np.nan,3,np.nan],
'2022-06-01' : [np.nan,np.nan,np.nan,np.nan,2,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan],
'2022-07-01' : [np.nan,1,np.nan,np.nan,np.nan,np.nan,1,np.nan,np.nan,np.nan,np.nan],
'2022-08-01' : [np.nan,np.nan,np.nan,1,np.nan,1,np.nan,np.nan,np.nan,np.nan,np.nan],
'2022-09-01' : [np.nan,1,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,1,np.nan],
'2022-10-01' : [np.nan,np.nan,1,np.nan,np.nan,1,np.nan,np.nan,np.nan,np.nan,np.nan],
'2022-11-01' : [np.nan,2,np.nan,np.nan,1,1,1,np.nan,np.nan,np.nan,np.nan],
'2022-12-01' : [np.nan,np.nan,np.nan,np.nan,3,np.nan,np.nan,2,np.nan,np.nan,np.nan],
'2023-01-01' : [np.nan,np.nan,1,np.nan,1,np.nan,np.nan,np.nan,2,np.nan,np.nan],
'2023-02-01' : [np.nan,np.nan,np.nan,2,np.nan,2,np.nan,np.nan,np.nan,np.nan,np.nan],
'2023-03-01' : [np.nan,3,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan],
'2023-04-01' : [np.nan,np.nan,np.nan,1,np.nan,np.nan,np.nan,1,np.nan,np.nan,np.nan],
'2023-05-01' : [np.nan,np.nan,2,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,2,np.nan],
'2023-06-01' : [1,1,np.nan,np.nan,9,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan],
'2023-07-01' : [np.nan,np.nan,np.nan,1,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan],
'2023-08-01' : [np.nan,1,np.nan,np.nan,1,np.nan,1,np.nan,np.nan,np.nan,np.nan],
'2023-09-01' : [np.nan,1,1,np.nan,np.nan,np.nan,np.nan,1,np.nan,np.nan,np.nan],
}
PreviousData = pd.DataFrame(PreviousData)
PreviousData
Current Data:
CurrentData = { 'Item' : ['ghi','stu','abc','mno','jkl','pqr','def','vwx','yza'],
'Summary' : ['food','camera','party','tv','school','photo','weekend','python','r'],
'2022-01-01' : [3, np.nan, np.nan, 1.0, np.nan, 1.0, np.nan, np.nan, np.nan],
'2022-02-01' : [np.nan,1,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan],
'2022-03-01' : [np.nan,1,1,1,np.nan,np.nan,np.nan,np.nan,np.nan],
'2022-04-01' : [np.nan,np.nan,1,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan],
'2022-05-01' : [np.nan,np.nan,3,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan],
'2022-06-01' : [2,np.nan,np.nan,np.nan,4,np.nan,np.nan,np.nan,np.nan],
'2022-07-01' : [np.nan,np.nan,np.nan,np.nan,np.nan,4,np.nan,np.nan,np.nan],
'2022-08-01' : [np.nan,np.nan,3,np.nan,4,np.nan,np.nan,np.nan,np.nan],
'2022-09-01' : [np.nan,np.nan,3,3,3,np.nan,np.nan,5,5],
'2022-10-01' : [np.nan,np.nan,np.nan,np.nan,5,np.nan,np.nan,np.nan,np.nan],
'2022-11-01' : [np.nan,np.nan,np.nan,5,np.nan,np.nan,np.nan,np.nan,np.nan],
'2022-12-01' : [np.nan,4,np.nan,np.nan,np.nan,1,np.nan,np.nan,np.nan],
'2023-01-01' : [np.nan,np.nan,np.nan,np.nan,1,1,np.nan,np.nan,np.nan],
'2023-02-01' : [np.nan,np.nan,np.nan,2,1,np.nan,np.nan,np.nan,np.nan],
'2023-03-01' : [np.nan,np.nan,np.nan,np.nan,2,np.nan,2,np.nan,2],
'2023-04-01' : [np.nan,np.nan,np.nan,np.nan,np.nan,2,np.nan,np.nan,2],
}
CurrentData = pd.DataFrame(CurrentData)
CurrentData
As requested, here's an example of a difference:
Any tips on how to transpose and compare these two sets would be greatly appreciated!
CodePudding user response:
One way of doing this is the following. Transpose both dataframes:
PreviousData_t = PreviousData.melt(id_vars=["Item", "Summary"],
var_name="Date",
value_name="value1")
which is
Item Summary Date value1
0 abc party 2022-01-01 1.0
1 def weekend 2022-01-01 NaN
2 ghi food 2022-01-01 NaN
3 jkl school 2022-01-01 1.0
4 mno tv 2022-01-01 NaN
.. ... ... ... ...
226 stu camera 2023-09-01 NaN
227 vwx python 2023-09-01 1.0
228 yza r 2023-09-01 NaN
229 uaza rstudio 2023-09-01 NaN
230 fupa spyder 2023-09-01 NaN
and
CurrentData_t = CurrentData.melt(id_vars=["Item", "Summary"],
var_name="Date",
value_name="value2")
Item Summary Date value2
0 ghi food 2022-01-01 3.0
1 stu camera 2022-01-01 NaN
2 abc party 2022-01-01 NaN
3 mno tv 2022-01-01 1.0
4 jkl school 2022-01-01 NaN
.. ... ... ... ...
139 jkl school 2023-04-01 NaN
140 pqr photo 2023-04-01 2.0
141 def weekend 2023-04-01 NaN
142 vwx python 2023-04-01 NaN
143 yza r 2023-04-01 2.0
[144 rows x 4 columns]
THen merge:
Compare = PreviousData_t.merge(CurrentData_t, on =['Date','Item','Summary'], how = 'left')
Item Summary Date value1 value2
0 abc party 2022-01-01 1.0 NaN
1 def weekend 2022-01-01 NaN NaN
2 ghi food 2022-01-01 NaN 3.0
3 jkl school 2022-01-01 1.0 NaN
4 mno tv 2022-01-01 NaN 1.0
.. ... ... ... ... ...
226 stu camera 2023-09-01 NaN NaN
227 vwx python 2023-09-01 1.0 NaN
228 yza r 2023-09-01 NaN NaN
229 uaza rstudio 2023-09-01 NaN NaN
230 fupa spyder 2023-09-01 NaN NaN
[231 rows x 5 columns]
and compare by creating a column marking differences
Compare['diff'] = np.where(Compare['value1']!=Compare['value2'], 1,0)
Item Summary Date value1 value2 diff
0 abc party 2022-01-01 1.0 NaN 1
1 def weekend 2022-01-01 NaN NaN 1
2 ghi food 2022-01-01 NaN 3.0 1
3 jkl school 2022-01-01 1.0 NaN 1
4 mno tv 2022-01-01 NaN 1.0 1
.. ... ... ... ... ... ...
226 stu camera 2023-09-01 NaN NaN 1
227 vwx python 2023-09-01 1.0 NaN 1
228 yza r 2023-09-01 NaN NaN 1
229 uaza rstudio 2023-09-01 NaN NaN 1
230 fupa spyder 2023-09-01 NaN NaN 1
[231 rows x 6 columns]
If you only want to compare those entries that are common to both, do this:
Compare = PreviousData_t.merge(CurrentData_t, on =['Date','Item','Summary'])
Compare['diff'] = np.where(Compare['value1']!=Compare['value2'], 1,0)
Item Summary Date value1 value2 diff
0 abc party 2022-01-01 1.0 NaN 1
1 def weekend 2022-01-01 NaN NaN 1
2 ghi food 2022-01-01 NaN 3.0 1
3 jkl school 2022-01-01 1.0 NaN 1
4 mno tv 2022-01-01 NaN 1.0 1
.. ... ... ... ... ... ...
139 mno tv 2023-04-01 NaN NaN 1
140 pqr photo 2023-04-01 NaN 2.0 1
141 stu camera 2023-04-01 NaN NaN 1
142 vwx python 2023-04-01 1.0 NaN 1
143 yza r 2023-04-01 NaN 2.0 1
[144 rows x 6 columns]