I have a df looking something like this but larger:
df = pd.DataFrame({
'Time' : [1,2,7,10,15,16,77,98,999,1000,1121,1245,1373,1490,1555],
'ID' : ['1', '1', '1', '1', '1', '2', '2', '2', '2', '2', '3', '3', '3', '3', '3'],
'Act' : ['1', '2', '4', '4', '2', '0', '2', '4', '4', '1', '4', '4', '1', '1', '2'],
'mean_bout_count' : ['2.3', '4', '7', '7', '1', '2', '2.2', '2.1', '2.1', '10', '3', '3', '3', '3', '3']})
For each row that is "Act_cat" == 4 and "mean_bout_count" < 3 I would like to take -1 from the "Act_cat" column. The code below takes a -1 from all rows as far as I can tell and also takes too long...
df = df.reset_index()
for i, row in df.iterrows():
if df.iloc[i]["Act_cat"] == 4 and df.iloc[i]["mean_bout_count"] < 3:
df["Act_cat"] = df["Act_cat"]-1
else:
df["Act_cat"] = df["Act_cat"]-0
Please let me know if you have a better idea!
Thank you!
CodePudding user response:
You could just do:
df.loc[df['Act'].eq(4) & df['mean_bout_count'].lt(3), 'Act'] -= 1
Time ID Act mean_bout_count
0 1 1 1 2.3
1 2 1 2 4.0
2 7 1 4 7.0
3 10 1 4 7.0
4 15 1 2 1.0
5 16 2 0 2.0
6 77 2 2 2.2
7 98 2 3 2.1
8 999 2 3 2.1
9 1000 2 1 10.0
10 1121 3 4 3.0
11 1245 3 4 3.0
12 1373 3 1 3.0
13 1490 3 1 3.0
14 1555 3 2 3.0
The problem with your approach was that by doing df["Act_cat"] = df["Act_cat"]-1
within the if
, you were subtracting 1 from the full column each time the condition evaluated to true
.